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Abstract 
 

Noisy Harmonic Grammar (NHG) is a framework for stochastic grammars that uses the 
GEN-cum-EVAL system originated in Optimality Theory. As a form of Harmonic Grammar, 
NHG outputs as winner the candidate with the smallest harmonic penalty (weighted sum of 
constraint violations). It is stochastic because at each “evaluation time,” constraint weights are 
nudged upward or downward by a random amount, resulting in a particular probability 
distribution over candidates. This “classical” form of NHG can be modified in various ways, 
creating alternative theories. I explore these variants in a variety of simple simulations intended 
to reveal key differences in their behavior; maxent grammars are also included in the 
comparison. In conclusion I offer hints from the empirical world regarding which of these rival 
theories might be correct. 

 
 

                                                 
1 Thanks to Kie Zuraw for substantial advice and assistance, and to Adam Albright, Joe Pater, Brian Smith, 

and talk audiences at the UCLA Phonology Seminar and AMP for their helpful feedback. 
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1. Background:  Stochastic constraint-based grammar frameworks in modern linguistics 

The key innovation of Optimality Theory (Prince and Smolensky 1993) was its GEN-plus-
EVAL architecture: GEN enumerates candidates, and EVAL, consisting of a set of constraints, 
selects the winning candidate from GEN as the output. This conception naturally led to the idea 
of a stochastic version of the theory, in which EVAL outputs not one single candidate but rather 
a probability distribution over GEN. Such a framework would provide a natural account of free 
variation and related phenomena: we get multiple outputs when the conflict between constraints 
is not completely resolved. Early such frameworks included the Floating Constraint model (Nagy 
and Reynolds 1997), Partial Ordering OT (Anttila 1997) and Stochastic OT (Boersma 1997), and 
with time still other approaches were put forward.  

 
The pursuit of such frameworks is empirically well-motivated because gradience in 

language is so widespread (see, e.g. Bod et al. 2003, Fanselow et al. 2006). Everywhere we look, 
if we look carefully, we find free variation in the outputs of grammar and gradience in well-
formedness intuitions. The work of Zuraw (2000, 2010) opened up a new domain of gradience, 
quantitative phonological patterns in the lexicon, often perceived accurately by language 
learners, with the ambient probability distributions accurately reproduced by them under 
experimental probing. Empirical work continues to support this “Law of Frequency Matching” 
(Hayes et al. 2009) as a baseline prediction for human phonological learning. All of these 
phenomena need an appropriate framework for formal analysis. 2 

 
The earlier phases of research on stochastic grammar frameworks were tinged with a 

practical orientation: it was felt to be important simply to establish that the frameworks really 
could work in nontrivial cases, e.g. by Boersma and Hayes (2001:46). It was also felt to be 
important to assess the learning algorithms offered in tandem with new stochastic frameworks. 
Such research is exemplified by the counterexample Pater (2008) discovered to the Gradual 
Learning Algorithm for Stochastic OT; or Goldwater and Johnson’s (2003) pointing out the 
sensibleness of using maxent based on its strong and reliable mathematical foundations. Soon, 
however, purely scientific goals entered the debate: different stochastic frameworks treat the 
same gradient data in different ways and make different empirical predictions, so that the choice 
of framework is really part of linguistic theory. Early on, Jesney (2007) demonstrated the 
substantial differences between Noisy Harmonic Grammar and maxent grammars in their 
treatment of consonant deletion for a CVCC input. Similarly, Boersma and Pater 
(2008/2016:410-412) compared versions of Harmonic Grammar in which constraint weights are 
either allowed or not allowed to go below zero. This article is intended as a contribution to this 
line of research:  I put forth some cases in which different varieties of Noisy Harmonic 
Grammar, as well as maximum entropy grammars, make different predictions. 

 

                                                 
2 My sense is that there remains some inertia among linguists in the recognition of variation as an empirical 

reality. I conjecture that this may be the consequence of traditional research methodologies of the field. It is still 
often the case that fieldworker and theorist never meet, and the latter takes the former’s first-pass best estimate as 
the analytical target. Different results are often obtained if the theorist has access to corpora, or performs 
experiments. Another factor may be the widespread use of problem sets (e.g. in first-year graduate training) in which 
the data have been intentionally cleansed of variation. 
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2. Background on the frameworks examined 

2.1 Noisy Harmonic Grammar 

Noisy Harmonic Grammar (hereafter “NHG”) is stochasticized Harmonic Grammar. 
Harmonic Grammar, which has an ancestry that predates OT (Legendre et al. 1990, Legendre et 
al. 2006, Pater 2008/2016, Potts et al. 2010,), uses the same GEN-cum-EVAL architecture, but 
instead of ranking the constraints, it assigns them numerical weights reflecting their relative 
strength. In the nonstochastic version of the framework, winning candidates are selected as 
follows. For each candidate’s row in the tableau, one multiplies violation counts by 
corresponding constraint weights and add up the total across constraints. This yields the 
harmony, a kind of penalty score.3 The winning candidate is the least penalized one; i.e. the one 
with the lowest harmony. In (1), we first see an OT-like tableau, with two constraints and two 
candidates, along with the weights of the constraints. Tableau (1b) shows how the basic 
computations are carried out, and it can be seen that Candidate 1, with the lesser harmony 
penalty, emerges as the winner. 

(1) Illustration of nonstochastic Harmonic Grammar 

a. /Input/ CONSTRAINT1 CONSTRAINT 2 
weights: 2 1 

Candidate 1  ** 
Candidate 2 * * 
 
b. /Input/ CONSTRAINT1 CONSTRAINT 2 Harmony 

weights: 2 1  
  Candidate 1  ** × 1 = 2 0 + 2 = 2 
 Candidate 2 * × 2 = 2 * × 1 = 1 2 + 1 = 3 

 
In what follows I will discuss stochastic versions of this theory.   

2.2 Classical Noisy Harmonic Grammar 

In what I will call Classical Noisy Harmonic Grammar, put forth by Boersma and Pater 
(2008/2016), Harmonic Grammar is stochasticized as follows. At each “evaluation time” 
(moment of application of the grammar), every constraint weight is separately perturbed upward 
or downward by a random amount drawn from a Gaussian distribution with mean 0 and a 
uniform standard deviation. This perturbation factor is called the noise; I will here employ a 
noise value of 1. Because of noise, on different evaluation times, there can often can be different 
winners, depending on what random noise values happen to have been assigned. 

 
For example, in (2) noise values (designated here as Nn) are added to each weight, 

influencing the computation of harmony. Candidate 2 is penalized by a greater “base value” of 

                                                 
3 Different scholars use different versions of Harmony, varying only in a negative sign (for some Harmony is 

a negative quantity). The nomenclature/choice of signs followed here is taken from Wilson (2006). 



Bruce Hayes Varieties of Noisy Harmonic Grammar p. 4 

harmony (3 vs. 2), making it mostly likely that Candidate 1 will win. But if the noise values 
happen to be such that N2 exceeds N1 by more than one, then Candidate 2 will win instead. The 
math when worked out shows that Candidate 2 will in fact win 24.0% of the time. The frequency 
pattern is shown in (2) informally with pointing fingers of different sizes. 

 
(2) Illustration of Classical Noisy Harmonic Grammar 

/Input/ CONSTRAINT1 CONSTRAINT 2 Harmony 
weight: 2 + N1 1 + N2  

 Candidate 1  ** × (1 + N2) 2 + 2N2 
  Candidate 2 * × (2 + N1) * × (1 + N2) 3 + N1 + N2 
 

The probability of 24.0% can be calculated, for instance, by performing various integrations over 
Gaussian distributions, a procedure that becomes laborious for all but simple cases (see Zuraw 
2000:105-113). A convenient alternative is to use the Monte Carlo method: one runs the same 
grammar, say, 100,000 times, counting up winners, and the values obtained, divided by 100,000, 
serve as a reasonable estimate of the probabilities generated by the grammar. 

 
The procedure established in Classical Noisy Harmonic Grammar represents just one choice 

from a whole set of logical possibilities for introducing noise into Harmonic Grammar. I 
conjecture that this choice was carried over from the pioneering first theory that used noise to 
stochasticize a constraint-based framework, namely Boersma’s (1997) Stochastic OT. Just as 
Stochastic OT adds noise to the “ranking values” of constraints and then uses the result to pick a 
winner by the rules of nonstochastic OT, so Classical NHG adds noise directly to the constraint 
weights and picks a winner by the rules of nonstochastic Harmonic Grammar. 

 
The alternatives to Classical NHG that I will consider here derive from just where in the 

system one “adds in the noise”. I will explore variants using cell-specific noise (§2.3) as well as 
variants that add the noise in late, e.g. after the multiplication of weights by violation counts 
(§3.3). 

 
2.3 NHG with cell-specific noise  

Goldrick and Daland (2009) suggest that we can profitably explore more fine-grained 
assignments of noise than in Classical NHG. Their proposal is actually made in a connectionist 
implementation of Harmonic Grammar that has other implications as well (for instance, different 
weights for +  − Faithfulness mappings than −  +, so I will here follow what is in context a 
more modest change in Classical NHG. Rather than perturbing the original constraint weights, 
we instead install a fresh noise value for every cell. For now, we assume that cells with no 
violations are not given a noise value, though this assumption will be revised later on. Here is an 
example: 
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(3) Illustration of Noisy Harmonic Grammar with cell-specific noise 

/Input/ CONSTRAINT1 CONSTRAINT 2 Harmony 
weight: 2 1  

 Candidate 1  * × (1 + N2) 2 + 2N2 
  Candidate 2 * × (2 + N1) * × (1 + N3) 3 + N1 + N3 
 
Let us compare the harmony values from the tableaux of (2) and (3):  the Classical theory 

assigns Candidate 2 a perturbed harmony of 3 + N1 + N2 whereas the theory with cell-specific 

noise assigns it a perturbed harmony of 3 + N1 + N3; for both theories the harmony of Candidate 
1 is 2 + 2N2. We can think of (3) as displaying “cell-granularity” and (2) “constraint-
granularity”. This makes differing predictions, as will be illustrated shortly. 

 
2.4 Maxent grammars 

Before proceeding to this, I add one more theory to the list, namely maximum entropy 
Harmonic Grammar (Smolensky 1986, Goldwater and Johnson 2003, Wilson 2006, Jaeger 
2007, Hayes and Wilson 2008); “maxent” for short. Maxent, like NHG, carries forward the 
GEN-cum-EVAL architecture of Optimality Theory, and also employs Harmony as the basis of 
the computations. However, in maxent, there is no noise factor. Instead, a simple procedure 
directly computes the output probabilities from the harmonies of the candidates. The three steps 
of this procedure are given in (4), shown in the computation of the probability of a hypothetical 
candidate x. From Harmony we first compute “eHarmony” by negation and exponentiation; 4 by 
summing the eHarmonies of all candidates we compute the normalization term Z, and the 
probability of x is specified as the share of its eHarmony in Z. 

 
(4) Computing probability from harmony in maxent 

a. eHarmony:  e−Harmony(x) (e to the minus Harmony of candidate x) 
 
b. Z:   j eHarmony(j) (sum eHarmony over all candidates) 

c. probability: 
eHarmony(x)

Z   (candidate x’s share of Z) 

 
These computations result in what I believe to be intuitively sensible behavior in maxent 

grammars. First, candidates penalized by greater harmony receive lower probability. Second, it 
follows from how harmony is computed that constraints with larger weights will have a greater 
role in lowering probability of the candidates that violate them, and that multiple violations will 
have more effect in lowering the probability of the violating candidate. Third, the exponentiation 
involved in calculating eHarmony has an important consequence, namely that altering harmony 
values has different effects on different regions of the probability scale: it requires a large shift in 
the harmony penalty to alter probabilities that are already close to zero or one, but only small 
differences in harmony are needed make an appreciable probability shift in the medial regions 

                                                 
4 I borrow a jocular, but clear and useful, term from pedagogical materials created by Colin Wilson. 
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near 50%. This effect will be seen below (§3.3) when we study the sigmoid curves that maxent 
generates. 

 
For the tableau of (1), maxent generates probabilities as shown in (5). 

(5) Illustration of maxent 

/Input/ CONST1 CONST2 Harmony eHarmony Z Probability 
weights: 2 1   .135 + .05 = .185  

Candidate 1  ** 2 e−2 = .135  .135/.185 = .73 
Candidate 2 * * 3 e−3 = .05  .05/.185 = .27 

 
3. Examining the behavior of the various frameworks 

We now have three stochastic theories in hand (two versions of Noisy Harmonic Grmamar 
plus maxent); more will be added in what follows. The goal of this main section is to confront 
these various frameworks with simple, representative cases in which they behave differently. The 
goal is to provide schematic cases that have at least some hope of being fulfilled by real-life 
empirical examples, bringing the theories to the test. My examples will involve harmonic 
bounding, the local-optionality problem, and the competition of gradient against categorical 
constraints. 

 
3.1 Harmonic bounding 

This section reviews results already presented in Prince (2002), Jesney (2007), Goldrick and 
Daland (2009), and Boersma and Pater (2016). A very simple case of harmonic bounding is 
given in tableau (6).  

 
(6) Harmonic bounding 

a. Simple violations 
 

/Input/ CONSTRAINT1 CONSTRAINT 2 
Candidate 1  * 
Candidate 2 * * 
 

b. Harmony computation in Classical NHG 
 

/Input/ CONSTRAINT1 CONSTRAINT 2 Harmony 
weight: W1 W2  

 Candidate 1  * × (W2 + N2) (W2 + N2) 
     Candidate 2 * × (W1 + N1) * × (W2 + N2) (W1 + N1) + (W2 + N2) 

 
Candidate 2 has a proper superset of the violations of Candidate 1, and by the now-standard 
nomenclature of OT we say that Candidate 1 harmonically bounds Candidate 2. 
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Under a suitable interpretation, Classical NHG preserves the OT principle that 

harmonically-bounded candidates never win; i.e. they are assigned the probability zero. The 
essential auxiliary assumption is that weights, even after perturbation under noise, are always 
kept positive (Boersma and Pater 2016:401-412), a matter that can be imposed by fiat, adjusting 
all negative weights to zero. To make clear what weights are being kept positive by fiat, I will 
enclose expressions like (Wn + Nm), showing the perturbed value, with parentheses in the 
tableaux. In (6), we see that Candidate 2 always has a greater harmony penalty than Candidate 1, 
since the difference in harmony is (W1 + N1), which as a perturbed harmony value must be 
greater than zero. More generally, no harmonically bounded candidate can ever win in Classical 
NHG when the no-negative weight proviso is in effect.5 

But in cell-granular NHG, as Goldrick and Daland pointed out, harmonically-bounded 
candidates do not always necessarily lose, even under a no-negative-weight regimen. For our 
schematic case, the calculations are as in (7): 

(7) Lack of harmonic bounding in cell-granular HNG 

/Input/ CONSTRAINT1 CONSTRAINT 2 Harmony 
weight: W1 W2  

 Candidate 1  * × (W2 + N1) (W2 + N1) 
  Candidate 2 * × (W1 + N2) * × (W2 + N3) (W1 + N2) + (W2 + N3) 
 
Since there are separate noise values for each cell, it is quite possible that these will be such 

that (W2 + N1) > (W1 + N2) + (W2 + N3), even if all weights are required to be positive, so it is 
possible for Candidate 2 to win. The fact that Candidate 2 bears the additional penalty of W1 not 
borne by Candidate 1 means that Candidate 1 will be more likely to win. In general, cell-granular 
NHG requires that harmonically bounded candidates get a lower probability than the rival 
candidates that bound them, but they do not get shut out entirely as they do under the all-
weights-positive version of Classical NHG. This can be thought of as the “relative” version of 
harmonic bounding, and is characteristic of theories that do not impose absolute harmonic 
bounding. 

 
Maxent also has only the relative version of harmonic bounding. As Jesney (2007) pointed 

out, this can be deduced directly from the maxent formulae, given above in (4). The key point is 
that any candidate whatsoever must get at least some positive probability, which of course 
totally excludes harmonic bounding. The reason is this:  e to any number is positive, and so 
eHarmony is always positive. Since Z is a sum of eHarmonies, it too is positive, and therefore 
the probability assigned to any candidate is positive. The always-positive-probability is not as 
drastic a move as it might seem, because in an adequate analysis the truly bad candidates are 
assigned infinitesimally small probabilities; few sensible scholars, I think, will worry about bad 
candidates whose positive probability is 10−50. For why maxent observes “relative” harmonic 

                                                 
5 Note added in proofs: I now realize that eliminating negative weights by fiat will not in general impose zero frequency 

on harmonically bounded candidates; only the “Exponential HG” described by Boersma and Pater will suffice for this purpose. 
For discussion, see first file of Supplementary Materials, www.linguistics.ucla.edu/people/hayes/VarietiesOfNHG. 

http://www.linguistics.ucla.edu/people/hayes/VarietiesOfNHG
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bounding, note that if Candidate 1 harmonically bounds Candidate 2, then Candidate 2 will have 
the higher Harmony penalty, and hence a lower eHarmony (negation plus exponentiation), and 
hence a lower probability.6  

 
Summing up so far:  Classical HNG, suitably constrained to keep weights positive, is the 

only framework so far that respects classical (absolute) harmonic bounding. Cell-granularity 
NHG and maxent respect only a relative version (the bounded candidate gets lower probability 
than its bounder). 

 
3.2 A special case of harmonic bounding:  Local optionality 

Local optionality is a long-standing challenge for OT and other constraint-based theories, 
and has accumulated a modest research literature including Vaux (2003, 2008), Riggle and 
Wilson (2005), Kaplan (2011, 2016), and Kimper (2011). Intuitively, the idea is that the same 
phonological process, guided by the same constraints, is applicable at more than one place in the 
input. For example, if we had a language that optionally voiced intervocalic /p/ to [b], then an 
underlying form /apapa/ might yield four plausible candidates:  [apapa], [apaba], [abapa], and 
[ababa]. The middle two of these, with internally mismatched outcomes, are the cases that 
illustrate local optionality; the other two illustrate application or non-application of voicing “in 
lockstep.” 7 

 
The literature just cited describes a small set of useful empirical cases of local optionality, 

including French schwa deletion, Makonde vowel harmony, Bengali intonation phrasing, and 
Pima reduplication. To my knowledge, in none of these cases is it (yet) feasible to test the 
differences I am about to demonstrate. Indeed, for the case of French schwa deletion, the 
existence of “extraneous” constraints (tied to particular morphemes; Kaplan 2016) suggest that a 
pure test of the differences I will illustrate may be outright impossible. Nevertheless, the 
differences are in principle substantial and it seems useful to keep them in mind as further 
empirical cases arise. 

 
For clarity, let us scale up our schematic /apapa/ input to /apapapapa/, with four /p/’s, and 

group the candidates into classes according to how many /p/ become [b]. Adopting standard 
Markedness and Faithfulness constraints, we get a tableau like (8). 

 

                                                 
6 A minor correction:  if the constraints on which Candidate 1 and Candidate 2 differ all have zero weights, 

then of course they will have identical Harmonies and identical probabilities. Candidate 2 can never have a higher 
probability than Candidate 1. 

7 A real-life counterpart of this language, Warao (Osborn 1966), is claimed to have obligatory across-the-
board-or-none application; this may reflect the effect of style, discussed below in §4.3 below.  
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(8) Local optionality in /apapapapa/ 

/apapapapa/ IDENT(voice)  *VpV 
[apapapapa]   **** 
[apapapaba] et al. *  *** 
[apapababa] et al. ** ** 
[apabababa] et al. *** * 
[ababababa] ****  

 
The tableau shows double pyramids of asterisks. These are characteristic in multiple application 
cases, since there is a direct tradeoff of Markedness and Faithfulness violations at every 
application locus. 
 

Classical NHG (assuming the no-negative weights proviso) can derive only [apapapapa] and 
[ababababa], the lockstep candidates. At any evaluation time either IDENT(voice) or *VpV will 
have the lower perturbed weight, and the candidate that concentrates its violations on that 
constraint will emerge as the winner. As previous authors have pointed out, this is harmonic 
bounding, or more specifically the “collective” harmonic bounding described by Samek-
Lodovici and Prince (1999); the lockstep candidates jointly, rather than singly, exclude all the 
others. 

 
In contrast, maxent and cell-granularity NHG, which do not respect harmonic bounding, can 

assign probability to the medial candidates, as we will see. But I would like to take the question 
one step further:  what sort of probability distributions do the two theories characteristically 
assign? To see this, let us scale up the schematic input form to six intervocalic /p/, i.e. underlying 
/apapapapapapa/. I will assume for concreteness that the process of intervocalic voicing applies 
with a probability of 50%, and that there is no dependency across loci. Tableau (9) is a sketch 
summary of the 64 equiprobable candidates. 

 
(9) A tableau with six /p/ and 64 candidates 

Input Candidate Freq. *VpV IDENT(voice)

/apapapapapapa/ apapapapapapa 1 ******  
 apapapapapaba 1 ***** * 
 apapapapabapa 1 ***** * 
 apapapabapapa 1 ***** * 
 apapabapapapa 1 ***** * 
 apabapapapapa 1 ***** * 
 abapapapapapa 1 ***** * 
 apapapapababa 1 **** ** 
 apapapabapaba 1 **** ** 
 (48 not listed) … … … 
 ababababapaba 1 * ***** 
 abababababapa 1 * ***** 
 ababababababa 1  ****** 
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For the case of maxent, I submitted a file embodying (9) to the Maxent Grammar Tool 
(Wilson and George (2009). Under suitable conditions,8 we get the most minimal analysis 
conceivable:  both constraints get weighted at zero, and under this condition the data are in fact 
predicted perfectly — equiprobability across all 64 candidates. This is, indeed, why the theory is 
called maximum entropy; it makes minimal commitments (maximum randomness) in the 
absence of any sort of pattern in the training data. 

 
Let us turn now to cell-granular NHG. Under our assumption that neither [p] nor [b] is 

favored overall, we can simplify the analysis, since this means that W*VpV and WID(voice) must be 
equal; call this number W. Moreover, every candidate will have a basic (non-perturbed) harmony 
penalty of 6W (see tableau (9)), which will cancel out in the harmony comparisons. This means 
is it safe to assume that W is fairly big (say, about 5), which has the beneficial effect of keeping 
perturbed weights positive essentially all the time without any intervention on our part. Now we 
can offer a simple picture of the relative harmonies (with W left out) for some representative 
candidates: 

 
(10) Sources of harmony for the candidate types (W omitted) 

Candidate *VpV IDENT(voice) 

apapapapapapa  6N1  
apapapapapaba, other candidates with 1 [b]9 5N2 N3 
apapapapababa, other candidates with 2 [b] 4N4 2N5 
apapapabababa, other candidates with 3 [b] 3N6 3N7 
apapababababa, other candidates with 4 [b] 2N8 4N9 
apabababababa, other candidates with 5 [b] 1N10 5N11 
ababababababa  6N12 

 
From this it is not hard to compute the predicted frequency of each candidate type (I used 

my “OTSoft” software10 to do this). The result is given in the graph (11), which portrays a U-
shaped distribution:  some probability is allocated to all candidates, but with priority to the 
extremes, and lowest probability to the midpoint. It should be borne in mind that the probabilities 
given in the graph are not the aggregate probabilities assigned to (say) all three-[b] candidates, 
but to individual members of the 64-candidate set. 

 

                                                 
8 Specifically, a general penalty for constraint weights (Gaussian prior), often employed for maxent, is in 

effect. 
9 Bear in mind that every candidate gets its own noise, so really there are 2 x 64 − 2 = 126 noise values, of 

which only 12 are shown. 
10 Version 2.5: www.linguistics.ucla.edu/people/hayes/otsoft/ 
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(11) U-shaped distribution derived by cell-granularity NHG 

 
 
For reference, I propose a name for the phenomenon seen here:  upsilonism, which is 

defined as a situation in which a system must generate a U-shaped probability distribution as a 
consequence of its architecture. It should be clear that for cell-granularity NHG, upsilonism is an 
absolute limitation:  even if we used an algorithm to train it on a flat distribution, it could only 
learn a U-shaped one; given the single parameter W, it lacks the freedom to do otherwise. 

 
Upsilonism was first discovered by Jesney (2007) in her study of CCVC syllable typology; 

there too, Classical NHG creates an upsilonic distribution, with the maximally faithful (CCVC) 
and unfaithful (CV) candidates at the extremes receiving higher probabilities. Our six-[p] 
simulation shows the same pattern in more extravagant form. 

 
The presence of upsilonism in Classical NHG can be explained intuitively on the basis of 

chart (10). If, at some evaluation time, the noise factor N1 happens to come out low, then the 
[apapapapapapa] will be likely to win, for it benefits sixfold from this lowness. At the other end 
of the scale, [abababababa] benefits sixfold whenever N12 comes out low. But the medial 
candidates will benefit less (fivefold, fourfold, etc.) from their lucky moments. They will have 
trouble standing out, the more so the closer to the center they lie. 

 
Maxent is also biased, but in the opposite direction:  all 64 candidates have the Harmony 

value 6W and this will generate a flat distribution no matter what choice is made for W; the 
distribution of the training data is irrelevant. Thus we might say that maxent shows a bias for 
rectilinearism.  

 
I put forth this case, following Jesney, as a pattern that might someday lead to empirical 

testability: we need multiple-locus phonology with opposed constraints of Markedness and 
Faithfulness and a fairly symmetrical overall distribution, and essential non-interference from 
other constraints or aspects of speaking style or rate (this is perhaps a tall order). In such cases, 
irrespective of the overall training frequencies, classical NHG allocates all probability to the 
extremes, cell-granular NHG demands upsilonism, and maxent requires rectilinearism.  
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3.3 Post-multiplicative vs. pre-multiplicative noise addition 

Let us turn now to another special property of Classical NHG:  because the noise is added in 
at the very beginning, it gets multiplied by violation count during the calculation of the perturbed 
harmony. Tableau (12) illustrates this; see in particular the terms 3N2, 2N1, and 2N2. 

 
(12) Multiplication of noise in Classical Noisy HG  

/Input/ CONSTRAINT1 CONSTRAINT 2 Harmony 
weight: 2 + N1 1 + N2  

 Candidate 1 * × (2 + N1) *** × (1 + N2) 5 + N1 + 3N2 
  Candidate 2 ** × (2 + N1) ** × (1 + N2) 6 + 2N1 + 2N2 
 
This is of course not a conceptual necessity. We could just as easily compute and store a 

noise value for each constraint, and add in this noise after weights have been multiplied by 
violations. We could call this system “Noisy HG with post-multiplicative noise”; it is illustrated 
in (13). 

 
(13) Classical Noisy HG with post-multiplicative noise 

/Input/ CONSTRAINT1 CONSTRAINT 2 Harmony 
weight: 2 1  

 Candidate 1 (* × 2) + N1 (*** × 1) + N2 5 + N1 + N2 
  Candidate 2 (* × 2) + N1 (** × 1) + N2 6 + N1 + N2 
 

For the moment, let us adopt what is arguably the simplest implementation of this system:  the 
noise is added in even when the number of violations is zero, and we will not bother with any 
provision to keep weights above zero. We will consider more complex implementations in §3.4 
below.11  
 

Let us now ponder a scenario in which the difference between pre-multiplicative and post-
multiplicative noise will produce an observable difference in model predictions. I will assume a 
set of parallel binary competitions in which two viable candidate types, 1 and 2, compete for 
each input. Constraint 1 will always penalize Candidate 1 and will always incur just one 
violation. Constraint 2 penalizes Candidate 2 and is a scalar constraint, with a range of integer 
values, penalizing Candidate 2 according to how many of some property it has.  

                                                 
11 Tableau (13) can be reconceptualized quite differently. Observe that every candidate is penalized by a 

value that consists of its basic harmony, plus the sum of one noise factor for each constraint (in (13), N1 + N2). The 
sum of a set of Gaussian distributions is itself a Gaussian. So (13) is very little different from a system of candidate 
noise, in which we first compute non-stochastic Harmony, then add a single noise factor to every candidate. The 
only difference is that in (13) the overall noise level depends on the number of constraints in the grammar. Whatever 
properties hold of post-violation, noise-for-all-cells, negative-weights-ok NHG will usually hold as well for 
candidate-noise NHG. I find candidate-noise NHG conceptually appealing because it dispenses entirely with the 
complexities associated with negative constraint weights; the weights are not perturbed at all. Thanks to Adam 
Albright and Brian Smith for pointing out candidate noise to me as a possibility. 
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This scenario has real-world analogues pursued in earlier research (Hsu and Jesney 2016, 
McPherson and Hayes 2016). In McPherson and Hayes’s study of Tommo So vowel harmony, 
the phenomenon is vowel harmony; the single-violation constraint is IDENT(feature) for each 
harmonizing feature, and the scalar constraint is AGREE(feature) for each of seven degrees of 
“morphological closeness,” formalizing the morphological levels of classical Lexical Phonology 
(Kiparsky 1982); inner levels create more violations of AGREE.  

 
For purposes of illustration I will set the number of values for the scalar constraint to 20; this 

is probably too high a number to be matched in any sort of empirical phenomenon but will 
illustrate the qualitative form of the predictions most clearly. The violation tableau is given in 
(14). 

 
(14) Schematic example:  scalar constraint pitted against constant constraint 

  
SCALAR 

CONSTRAINT 
CONSTANT 

CONSTRAINT 
Input 1 Candidate 1 0  
 Candidate 2  1 
Input 2 Candidate 1 1  
 Candidate 2  1 
Input 3 Candidate 1 2  
 Candidate 2  1 
Input 4 Candidate 1 3  
 Candidate 2  1 
… … … … 
Input 20 Candidate 1 19  
 Candidate 2  1 

 
Calculating with spreadsheets and OTSoft, I examined how the probability of Candidate 1 

goes down as we increase the number of violations of SCALAR CONSTRAINT. We consider maxent 
first; chart (15) gives the result when Wscalar = 1, Wconstant = 10. 

(15) Scalar against constant constraint: curve derived under maxent  
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This is a sigmoid curve, and its mathematical properties are well understood. As a version of 
the logistic function, it is symmetrical about the point of 50% probability; it asymptotes at one in 
the negative direction, and it asymptotes at zero in the positive direction.  

 
Turning next to NHG with post-multiplicative noise, we can see the behavior of this theory 

in chart (16); it assumes WScalar = 2, WConstant = 20 (twice the maxent weights). 
 

(16)   Scalar against constant constraint: sigmoid curve derived under NHG with post-
multiplicative noise 

 

Here again we have a sigmoid, but with a different mathematical basis; it is the cumulative 
distribution function for the normal distribution. Its shape is, however, amazingly similar to the 
logistic function: it too is symmetrical about the 50% point and asymptotes at one and zero. 
 

In Classical NHG, with pre-multiplicative noise, the result obtained is strikingly different. In 
(17), the weights are again 2 for the constant constraint and 20 for the scalar constraint. 

(17) Scalar against constant constraint:  sigmoid curve derived under Classical NHG 

 



Bruce Hayes Varieties of Noisy Harmonic Grammar p. 15 

Here, the curve is asymmetrical, and although it asymptotes at one on the left, it does not 
asymptote at zero on the right (the rightward asymptote turns out to be about 0.07). The origin of 
this asymmetry lies in the broadening of the noise distribution that results when noise gets 
multiplied — the broadened distribution means that the range of perturbed weights for the scalar 
constraint continues to overlap substantially with the range of constant weights no matter how 
high the violation count goes, so that the right tail of the curve can never reach zero. 

Summing up, I believe is it the case that all versions of NHG that multiply noise by violation 
count derive asymmetrical curves that fail to asymptote to zero as violations increase. Versions 
of NHG that do not multiply noise by violation count derive symmetrical curves asymptoting at 
zero and one, as does maxent. 

3.4 Revisiting the three simulations under a broader range of assumptions  

The previous sections introduced or reviewed four free “parameters” for NHG: whether 
noise is constraint-granular or cell-granular, whether noise is pre- or post-multiplicative, whether 
empty cells get noise, and whether weights can go negative. This yields a substantial group of 
variant NHG frameworks, which I have checked out against all three schematic cases examined 
here; see Supplementary Materials.12 For harmonic bounding (§3.1), things seem fairly simple: it 
holds when noise is both constraint-granular and non-negative. For scalar vs. constant constraints 
(§3.3), the choice of symmetrical/zero-asymptote vs. asymmetrical/nonzero asymptote sigmoids 
is likewise straightforward, depending entirely on whether or not noise addition is post-
multiplicative.  

 
The local-optionality problem (§3.2) proves more complicated, and the outcomes observed 

so far (harmonic bounding, upsilonism, and rectilinearism) are not the only possibilities. We will 
also see “earlike” patterns, which are rectilinear except for upward or downward deviations at 
the extremes, as shown in (18). 

 
(18) Probability distributions with “ears” 

a. Downward   b. Upward 
 
 
 
The full set of patterns is as follows. 
 
 First, if we continue to hold to the assumptions made §3.3 — noise added even for zero-

violation cells, and no ban on negative weights — then upsilonism emerges as the 
consequence of pre-multiplicative noise, and rectilinearism results from post-
multiplicative noise. This makes sense in light of the discussion in §3.2 of how pre-
multiplicative noise creates a special benefit for candidates that are close to the periphery 
of the scale. 

 

                                                 
12 www.linguistics.ucla.edu/people/hayes/VarietiesOfNHG. For convenience I have also included the 

predictions of the theories for Jesney (2007)’s CVCC typology. 

http://www.linguistics.ucla.edu/people/hayes/VarietiesOfNHG
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 If violation-free cells get no noise, special effects are observed. The crucial empty cells 
can be seen in (9); they are found only for the “peripheral” candidates, i.e. at *VpV in the 
fully-faithful candidate [apapapapapapa] and at IDENT(voice) for the fully-unmarked 
[ababababababa]. 

 
 In cell-granularity NHG, the peripheral candidates will have one Noise factor 

instead of two, and thus will be less noisy. This gives them trouble in standing 
out, and the resulting distribution underrepresents the peripheral candidates while 
giving equal probability to all the medial ones, as in the downward-pointing 
“ears” shown in (18).  

 In constraint-granularity NHG, all the candidates get same noise, N1 and N2, 
except the peripheral ones (maximally faithful, maximally unmarked). These are 
exempted from one noise factor and thus can stand out when this factor is high. 
The resulting distribution is rectilinear in the middle with upward-pointing “ears” 
at the periphery, as in (18).  

 
 Similar outcomes arise when we let violation-free cells have noise, but limit the 

noise to positive values. 
 

3.5 Summary of the modeling results 

I. To repeat the results of earlier researchers, Noisy Harmonic Grammar preserves the basic 
OT property of excluding harmonically bounded candidates, but only under certain conditions:  
noise must be constraint-specific, and perturbed weights must not allowed to go negative. 

 
II. Various theories yield quite different behaviors for the local-optionality problem. 

Classical NHG respects harmonic bounding and awards probability only to the peripheral 
“lockstep” candidates. Maxent, and some versions of cell-specific NHG, yield rectilinear 
distributions; versions of NHG that multiply noise by violations are generally upsilonic; and 
versions that give special treatment to the peripheral candidates (either by assigning them no 
noise, or by forbidding negative weights) are rectilinear but with upward or downward tweaks at 
the periphery. 

III. When a scalar constraint is pitted against a constant one, then pre-multiplicative noise 
(as in classical NHG), gives asymmetrical sigmoids with a nonzero asymptote. Post-
multiplicative noise, and maxent, derive symmetrical sigmoids with asymptotes at zero and one. 

 
4. The empirical side 

The primary purpose of this paper has been to note differing predictions among stochastic 
constraint-based frameworks. But in the longer run these predictions should be put to the test, 
and I here summarize the few facts I am aware of that can bear on the differences pointed out 
here. 
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4.1 The harmonic bounding controversy 

The harmonic bounding issue seems to be a really fundamental difference between theories 
— and one that is hard to adjudicate empirically. It is often possible, as Kaplan (2016) showed, 
to remove instances of putative harmonic bounding by finding constraints violated by the 
bounding candidate. These constraints may well have their own empirical or theoretical 
motivation. However, it may be possible to argue for the existence of harmonically bounded 
candidates with nonzero probability on other grounds, as I will now suggest. 

 
4.1.1 Harmonically-bounded winners as the basis of gradient inventory theory 

Theories that impose classical harmonic bounding seem a priori more restrictive, yet 
grammars that impose only the statistical version of harmonic bounding have arguable 
advantages. Specifically, there are quite a few analytic applications in linguistics where the goal 
is not to derive B from A, but to define a set of well-formed representations: grammatical 
sentences, morphologically-legal words, lines of verse, or words construed as phoneme strings. 
For all of these, membership in a putative “list of legal forms” is ill-defined, because native 
speakers’ intuitions of well-formedness are gradient. A sensible strategy here is to create a 
grammar that assigns a probability value to every member of GEN, with gradient well-
formedness related to the probability of a candidate in some monotonic way. This has been done 
for phonotactics by Hayes and Wilson (2008) and for metrics by Hayes, Wilson, and Shisko 
(2012). 

 
This procedure should be compared with the well-established analytic strategy for 

determining inventories in classical OT: the theory of the Rich Base, in which we carry out 
“pseudo-derivations” to underlie inventories — the legal forms are whatever can emerge from at 
least one input form (Prince and Smolensky 1993, Keer and Baković 1997, Hayes 2004, Prince 
and Tesar 2004, etc.). I think that the Rich Base theory is difficult to extend to gradience in well-
formedness, because it predicts that semi-bad forms should be sometimes repaired by speakers 
when they say them. What actually happens is that they are usually pronounced successfully, and 
their imperfection lies solely in the speaker’s intuition, or the speaker’s expectations in speech 
perception (Massaro and Cohen 1983, Moreton and Amano 1999). 

 
4.1.2 An empirical example of gradient harmonic bounding 

As noted above, various of theories described here impose a gradient (probability-
difference) version of harmonic bounding. This prediction has not been checked out very widely, 
but I offer here an example from metrics, taken from Hayes and Schuh (in progress), who study 
the quantitative rajaz meter of Hausa. The meter is fundamentally iambic, based on repeated 
light-heavy; i.e. ⏑ – sequences, but there is a great deal of flexibility, and the “metron” (a 
sequence of two iambs) can be realized by various other hexamoraic patterns. In the 
Hayes/Schuh analysis, these other patterns violate prominence alignment constraints that affiliate 
syllable weight to metrical strength, and the violations form a pattern of harmonic bounding, as 
shown in (19). 
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(19) A pattern of harmonic bounding in Hausa rajaz meter 

 STRONG POSITIONS 

MUST INITIATE HEAVY 

SYLLABLE 

HEAVY SYLLABLE 

MUST INITIATE IN 

STRONG POSITION 
   x       x 
x x x x x x 
 
⏑ –    ⏑ – 

  

   x       x 
x x x x x x 
 
–    ⏑ ⏑ – 

* * 

   x       x 
x x x x x x 
 
–    –    – 

* ** 

 
Hayes and Schuh checked the relative frequencies of these metra, for eleven different poems 

by seven different poets, and counting metra from stanza-final metra separately (since they 
generally behave differently). What emerged was a near-perfect pattern:  no matter what the 
actual frequencies, the relative frequencies respected harmonic bounding relations for various 
poets/poems/stanza positions, as chart (20) shows. 

 
(20) Relative frequencies of three rajaz metron types across poets and stanza positions 

 
The few cases in which the inequalities [⏑ – ⏑ –] > [– ⏑ ⏑ –] and [– ⏑ ⏑ –] > [– – –] fail to hold 
involved relatively few data and could thus reflect accidents of sampling. The key idea of the 
analysis is that if all the poets are consistently using the same two constraints, and the harmonic 
bounding pattern of tableau (19) holds, then these relative frequency differences are inevitable. 
The example suggests a general type of case to look for; i.e. when the same constraints occurring 



Bruce Hayes Varieties of Noisy Harmonic Grammar p. 19 

in similar grammars repeatedly dictate a particular quantitative pattern among candidates related 
by harmonic bounding. 

 
4.1.3 The Goldrick/Daland theory of speech errors 

This also depends on harmonically bounded winners; see discussion in §3.1. 
 

4.1.4 Multiple locus cases 

These are, of course, a classic dilemma for the OT claim that harmonically bounded 
candidates always lose (Vaux 2003). To be sure, there are other solutions to the multiple-locus 
problem, cited above in §3.2. However, I think there is something appealing about getting 
multiple-locus cases — including, ideally, their fine-grained statistical detail — from the 
fundamental architecture of the theory, i.e. how probability distributions are computed. 

 
4.2 The characteristic shape of sigmoids in grammar 

In principle it should be quite possible to check out the scenario of §3.3 empirically, 
examining the frequency curves generated by conflict between a scalar and an opposing constant 
constraint. McPherson and Hayes (2016:156) this did this for Tommo So vowel harmony, and 
found that using classical NHG (with asymmetrical sigmoids) obtained a somewhat inferior fit to 
the data; maxent and NHG with postmultiplicative noise worked best. The reason is what might 
be expected:  the empirical data curves were symmetrical and (where the range of cases 
permitted this to be checked) asymptoted at zero and one. 

 
The phonological world is, I believe, well endowed with sigmoids that are symmetrical and 

asymptote at zero and one; see in particular Zuraw and Hayes (in press). Indeed, the same is 
likely true of syntax (Kroch 1989, Bresnan et al. 2007), speech perception, and perhaps cognition 
in general. I think it would be of some interest if examples in any domain were located that 
displayed the asymmetrical, non-zero-asymptote pattern predicted by versions of NHG that 
multiply noise by constraint weights. 

 
4.3 Upsilonism vs. rectilinearism 

I know of no data at all that bear on the question of upsilonism vs. rectilinearism. Perhaps it 
is experimentally testable. A difficulty is that free variation is responsive to style, and style is 
likely to create upsilonism independently of the constraint based frameworks:  typically informal 
speaking style favors process application (at all loci) and formal style disfavors it. 13 To the 
extent that the data includes a mix of speaking styles, it will likely be upsilonic no matter what.  

 

                                                 
13 For recent treatment in Harmonic Grammar of factors that, like style, act as cross-phonology “knobs,” see 

Coetzee and Kawahara (2013) and Coetzee (2016). 
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5. Conclusions 

The empirical picture is patchy, but perhaps it will not remain so forever. In truth, the 
theoretical picture is likewise very incomplete: as far as locating differences of prediction among 
stochastic frameworks, the cases mentioned or cited here surely only scratch the surface.  
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