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Some core 1deas of Lerdahl and
Jackendoft (1983)

e Their theory generates structural analyses, intended as

psychologically-real representations for how music 1s
apprehended by people.

e These analyses are obtained by selecting from a set of

logical possibilities, determined by the well-formedness
rules.

e The selection is made according to a set of preference
rules.

e Preference rules can conflict, resulting in vague or
ambiguous perceptions.
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A crucial 1ssue left unaddressed in L+J

e The theory is underformalized — it cannot

» make numerical predictions
» be rigorously tested with corpus or experimental data

e Hence LJ emphasize (persuasive) particular examples.

e Comment: LJ were brave to do this, and it was worth 1it.

» Conceptualization is at least as important as formal
implementation.

» They gave us a nice research problem — how to
formalize the theory?
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So why didn’t LJ formalize?

e They explain this very clearly (see “Remarks on
Formalism,” pp. 54-55). Two reasons:
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I. The Gradience Problem

e People’s judgments about the perceived structure are
often ambiguous, or not clear-cut.

» “[Our] rules fail to produce a definitive analysis
[because] we have not completely characterized what
happens when two preference rules come into
conflict.”

» [Numerical schemes, like rule weighting] “allow
only positive and negative judgments; not
ambiguous or vague ones.”
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II. The “Apples and Oranges™ Problem

e How to assign weights to preference rules of utterly
different types? E.g.:

“How much local instability in grouping, or loss of
parallelism, 1s one to tolerate in order to produce
more favorable results in the reductions?” (p. 54)
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Scrolling through 25 years of history

e Music cognition has flourished, by using

» theory

» data corpora

» experimentation

» computational modeling
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David Temperley’s modeling program

|. The Cognition of Basic Musical Structures (2001)

e Formalizes preference rules (using weights, as L+J
suggest), and succeeds in explicitly modeling lots of data.
But:

» No principled basis for assigning the weights; they
were “mostly set by trial and error”.
» Can’t predict gradience.
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I1. Music and Probability (2007)

e Temperley abandons preference rules, adopting instead
an eclectic mix of probabilistic models.

»> Again he addresses various data domains, and gets
good modeling results—this time including
gradience.
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Could there be a probabilistic
implementation of preference rules?

e My goal 1s to show that this 1s possible.
e [t also seems desirable:

» Preference rules embody the theory at a highly

abstract level, as 1n the “computational theory” of
Marr (1983).

» Their content is fully accessible to human
understanding, which should aid progress.
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Two premises

e Premise 1: preference rules are weighted, and the
weights are learned by people when exposed to idiom-
specific data.

» 1 conjecture that this is the solution to the
apples/oranges problem—you learn to balance apples
and oranges as they are balanced 1n the musical
idiom you are learning.

e Premise 2: Certain mathematical tools, newly developed
by computer scientists, provide a suitable formalization
for gradiently-operating preference rules.
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Rest of the talk

e Describe maximum entropy (maxent) grammars and
their associated learning algorithm.

e Describe why they are a good candidate for a formal
implementation of gradient preference rule theory.

e Case study: the “textsetting problem™ (Halle and Lerdahl
1993).

Slide 12



Maximum entropy grammars: starting
point
e In some domain of analysis, assume a candidate set.

» E.g. every possible Grouping Structure (L+J) for a
passage of music.

e Each preference rule is assigned a numerical weight.

e Each preference rule assigns violations to candidates,
denoting imperfection, following some formal scheme
created by the analyst.
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Maxent grammar: outline model

candidate preference
set rules
i assess

# of violations for
each candidate/
preference rule pair

weights of
preference rules

calculate

A 4
predicted probability for each
candidate
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The probability calculation

1.

'S)

For each candidate, find the dot product of weights and
violations (sum of individual products) over the set of
preference rules.

Take e (= 2.718) to the result.

Do the same for all candidates and sum overall, forming a
value termed Z.

Probability of a candidate = its share of Z.
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Finding the right weights

e Assuming a training set (€.g., a large body of music in a
particular 1diom)

e Weights are set to achieve an objective: maximize the
predicted probability of the data in the training set, given
the set of preference rules.

e ... thus minimizing the predicted probability of what 1s
not in the training set.

e The predicted probability of the data is calculable (as a
simple product).

e So finding the best weights becomes a mathematically
well-defined search problem.
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Searching for the best set of weights

e No time to cover here, but I note that the relevant
algorithms are

» proven to converge
» fast enough for the project to be feasible

e For extensive discussion and references, please consult

» Hayes, Bruce and Colin Wilson (in press) “A
maximum entropy model of phonotactics and
phonotactic learning,” to appear in Linguistic
Inquiry.
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Case study: the textsetting problem

e When we learn the words of a novel verse of a song, how
do we line then up against the song’s rhythm?

e People know how to do this, and agree fairly well in their
intuitions of preferred alignments.
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Example

Assume this text:

He rode and he rode till he came to the town,

and a L+J-style grid for a single line of this song:
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We must predict:

o o o o
o o o o o o o o
[ [ [ o o o o o o o o o o o o o
| | I N N
He rode  and he rode till he came to the town,
and not bad alternatives like:
o o o o
o o o o o o o o
[ [ [ [ o o o o o o o o o o o o
| | [ O O I R
He rode and he rode till hecame to the town,
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Gradience

e People often find multiple settings to be ok, varying
along a continuum of acceptability.
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Earlier work on the textsetting problem

e Dell (1975, 2004)

e Stein and Gill (1980)

e Ochrle (1989)

e Halle and Lerdahl (1993); Halle (1999, 2004)
e Hayes and Kaun (1996)

e Hayes (in press)

e Keshet (2006 ms.)
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Preference rules applied to textsetting: a
minor difference

e Production, not perception:

» Which of the (several thousand) alignments of
syllables to grid does the speaker prefer?
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Data to be modeled

e Hayes and Kaun (1996): 9 consultants each chanted the
text of 670 lines of traditional English folk song, in
rhythm.

e Goal is to model the share of the vote that each setting
got—this will serve as an approximation for gradient
intuition.
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Preference rules employed

e You’re going to have to take these mostly on faith ...

e Many are 1dentifiable as restatements, or contextually
applicable versions, of preference rules in L+1J.

e Others are related to how language 1s used to manifest
rhythm—

» This is the field of metrics, which has mostly
worked with data from written verse.
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Sample research findings 1n metrics

Stressed + stressless demands to match the grid more
strongly if the two syllables are in the same word.

Stressless + stressed demands to match the grid more
strongly if the two syllables are at the end of a major
phonological phrase.

e Preference rules are included here to capture these
effects.

e References: Halle and Keyser (1966, 1971), Kiparsky
(1975, 1977), Hayes (1983, 1989)
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Preference rules used

FILL S(TRONG BEAT)

DON’T FILL W(EAK BEAT)

FILL M(EDIUM BEAT)

implement L+J’s MPR 3
(EVENT)

MATCH PHRASE-FINAL

LEXICAL STRESS

RISING LEXICAL STRESS

*STRESS INM

*STRESS IN W

implement MPR 4 (STRESS)

REGULATE SW

REGULATE MW

REGULATE SM

implements both MPR 3 and 4

STRONG IS LONG

close to MPR 5 (LENGTH)
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DON’TFILL 16

DON’T FILL 1

implements GPR 2 (PROXIMITY)

RESOLUTION

AVOID LAPSE

WEAK RESOLUTION

text-grid duration matching
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An implementational 1ssue

e To keep computation size reasonable, I took two very
powerful preference rules:

» FILL STRONG (“the strongest metrical positions must
be filled with a syllable)

» REGULATE SW (“don’t put stronger stress in W than
in an adjacent S™)

and gave them the status of Well-formedness rules, thus
limiting the candidate set.
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The simulation summarized

425 lines (removed lines found only in some stanza types)
8.4 average # valid “votes” per line / 9

2.2 average # of distinct settings among the votes

117 Average # of candidates

e Goal: find weights that predict the distribution of votes
as accurately as possible

e | also did “cross-training” runs: train on one half, test on
other; this yielded similar results.

e | used maxent software created by Colin Wilson.
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Results I: sample output

‘Come all that’s around me and listen awhile’

Setting Votes Pred. score
B R 0.460
wgde ALl 1 0.155
N 0 0.117

4 1 0.117

(others, getting no votes)
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Results II: Raw correlation

e For the entire set of candidates, the correlation r of
predicted probability vs. “vote share 1s r = 0.883.

e This 1s only a rough measure, since most values for both
voting and prediction are at or close to zero.
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Results III: Data and predictions in bins

Vote share

Predicted probability
0-.1.1-2|.2-3|.3-4,.4-5|5-6|.6-.7|.7-.8|.8-9| .9-1
0-.148462| 191 | 41 10 7 3 1
1-.21 259 | 34 19 4 3 3 2 1 |
2-.3] 67 13 10 4 2 2 5 1 |
3-.4] 26 12 11 1 4 2 4 3 3
A4-5 12 13 6 3 6 3 2 4 4
5-.6 6 6 8 4 3 3 7 3 7
6-.7 3 1 5 5 3 6 17 6 14 1
-8 4 5 2 4 4 6 12 6 18 1
8-9 2 4 4 3 12 1 20 | 13 | 33 5
9-1 2 1 2 4 9 28 | 24 | 27 12
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Improvements possible?

e Preference rules could be improved, I think.

e Keshet (2006), working non-gradiently, has discovered
some new and interesting rules, but I’ve not had time yet
to implement them.
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Differences between consultants

e Hypothesis: the set of preference rules embodies the
general theory, part of the competence of all participants
(cf. L+J, 96).

e Individual 1diosyncrasies must be due to consultant-
specific weighting.

e We can detect this by training the weights on the data
specific to each consultant.
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Example: RH vs. DS’s weights for two
preference rules

RESOLUTION STRONG IS
LONG
RH 1.472 3418
DS 2.480 0.879

e RESOLUTION (Kiparsky 1977, Hansen 1990, Hayes and
Kaun 1996: Render as short any stressed syllable that 1s
not word-final.

e STRONG IS LONG (= L+J, MPR 5)

These different weights predict different behavior.
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“The remarkable day that I was wed”

Consultant DS’s setting satisfies RESOLUTION:

ﬂgﬂJﬁ/JJJJJJ

The re- mar ka ble day that 1 was wed

NI

The re- mar kable day that 1 was wed

Consultant RH’s setting satisfies STRONG IS LONG.
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DS and RH’s own grammars predict these
settings as favorites

Probabilities:

RH’s choice | DS’s choice
RH’s grammar 0.689 0.065
DS’s grammar 0.251 0.819
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Upshot

e The maxent approach not only characterizes the data as a
whole fairly well, but gives us a means of characterizing
individual differences 1n style.
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Caveat: do RH and DS really have
different grammars?

e Maybe, but my guess 1s that they are construing the
experimental situation differently:

» Each commands a variety of idioms.
» They accessed different ones in performing the
experimental task.
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Summary

e The maxent approach shows promise, I think:
» Solving the gradience and apples/oranges problems
» Retaining the generality and interpretability of the

preference rule approach.

e [t’s easy to apply, and if you would like to try 1t, I will
gladly share the software with you (email next page).
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Thank you

Author’s contact information:

Bruce Hayes
http://www.linguistics.ucla.edu/people/hayes/
bhayes@humnet.ucla.edu
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