

“These are a few of my favorite facts”:

Advances in phonology
from new data sources

Bruce Hayes
UCLA

Topic

- New methods of data gathering in phonology
- What we are learning from them

Background: a view of our research enterprise

- **Intensive inspection of language data**, with discovery of generalizations. This enables...
- **Formal theoretical analysis**, shedding light on the patterns discovered and integrating them into a general phonological theory. We can also pursue:
- **Integration with other areas of cognitive science**, relating our theories to
 - experimental data
 - acquisition
 - learning models
 - processing models

Phonologists can play a vital role in cognitive science

- because we are:
 - uniquely aware of the complexity and beauty of phonological systems
 - equipped with many good ideas from existing theory
- The data discussed here are particularly important to our role in the cognitive science enterprise, but also bear on some very traditional questions in our field.

Outline

- Four new kinds of data sources
- Some “favorite facts” obtained from them
- Theoretical consequences of these facts

Background: data corpora

- Traditional phonological analysis
 - identifies major patterns “by eye”
 - assumes that such patterns are of equal importance for the language learner in constructing her grammar.

Background: data corpora

- Traditional phonological analysis
 - identifies major patterns “by eye”
 - assumes that such patterns are of equal importance for the language learner in constructing her grammar.
- Experimental evidence (e.g., later in this talk) suggests that this procedure doesn’t tell the whole story:
 - the **frequency** of patterns plays a role in the completed grammar

Background: data corpora

- Traditional phonological analysis
 - identifies major patterns “by eye”
 - assumes that such patterns are of equal importance for the language learner in constructing her grammar.
- Experimental evidence (e.g., later in this talk) suggests that this is wrong:
 - the **frequency** of patterns, particularly where conflicting, plays a role in the completed grammar
- Corpora can give a clear picture of what the language learner confronts when constructing her grammar.

I. FULL-LEXICON CORPORA

Technical basis

- It is now possible to gather quantitative data about every word in the dictionary, using the Web.

Hayes and Londe's (in progress) corpus for Hungarian vowel harmony

- We began with a digital Hungarian dictionary...
- and for each nominal stem formed both possible datives (***-nak*** and ***-nek***, depending on vowel harmony).

Part of the input list

...

bibliofilnak

bíbornak

bíborosnak

bicajnak

bicajosnak

bicegnak

biciklinak

biciklizésnak

bigottnak

bigyónak

bikának

...

bibliofilnek

bíbornék

bíborosnek

bicajnek

bicajosnek

bicegnek

biciklinek

biciklizésnek

bigottnek

bigyónek

bikánek

(+ 10,000 more stems)

Next step:

- Obtain the **Google hit count** for each form, from Hungarian Web pages
- This is done by an Auto-Google program (<http://www.linguistics.ucla.edu/people/hayes/>), which Googles 20 items/second.
- In all but very common forms, hit counts yield very similar proportions (***-nak*** vs. ***-nek***) to actual frequencies in the language.

Counts obtained for the stems just listed

bibliofilnak	2	bibliofilnek	40
bíbornak	17	bíbornek	0
bíborosnak	670	bíborosnek	0
bicajnak	5	bicajnek	0
bicajosnak	6	bicajosnek	0
bicegnak	0	bicegnek	22
biciklinak	0	biciklinek	83
biciklizésnak	0	biciklizésnek	19
bigottnak	38	bigottnek	0
bigyónak	44	bigyónek	0
bikának	480	bikánek	0

Purpose: verifying proposals made in earlier work

- Earlier work on Hungarian (Szepe 1958, Vágó 1975, Kontra and Ringen 1986, Siptár, and Törkency 2000) has proposed some interesting regularities.
- The stems of interest: those ending in:

back vowel plus one or two **neutral vowels**

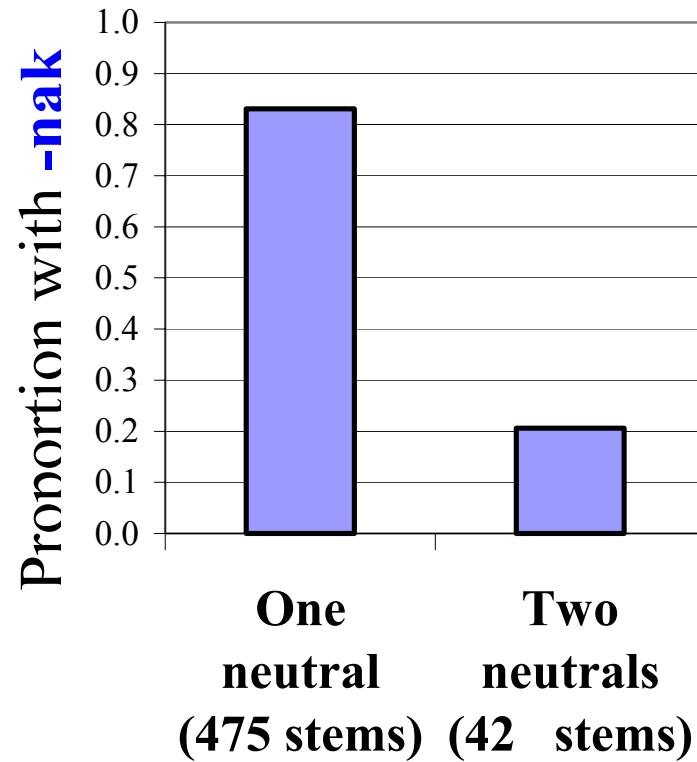
- In these stems, the frequency of front and back suffix allomorphs depends on two factors.

The double-neutral effect

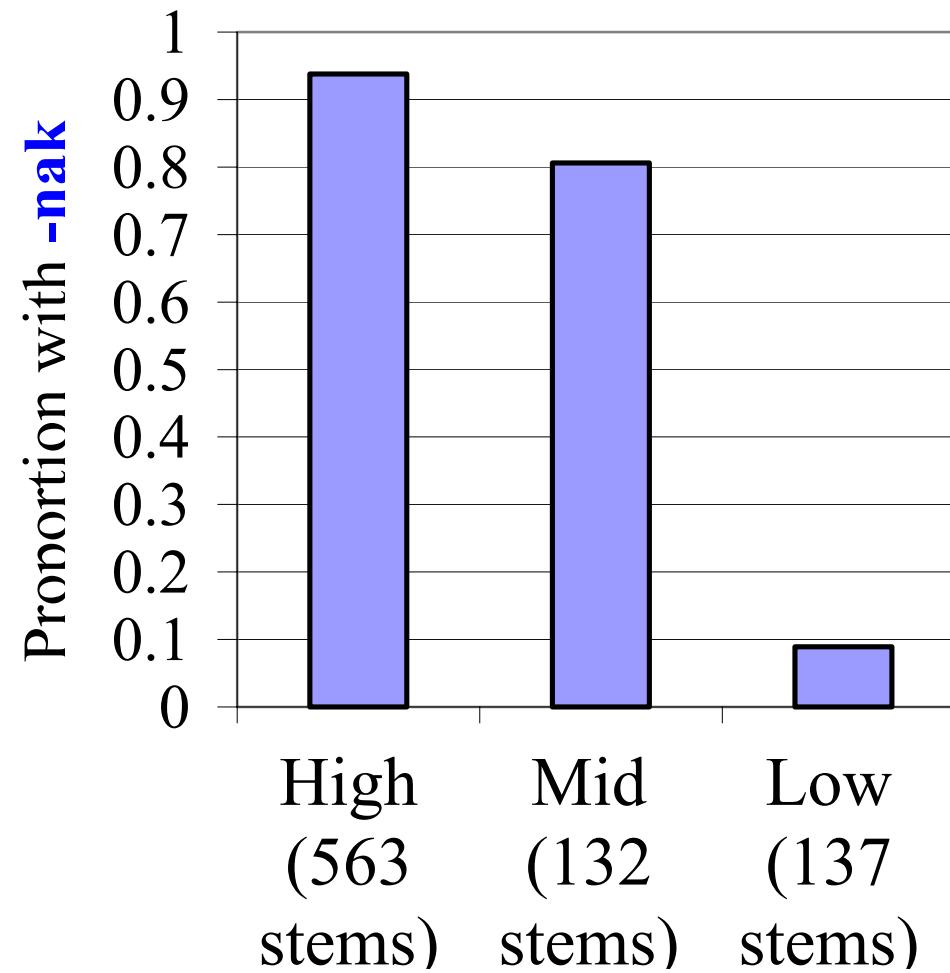
- Stems with **back** + **two neutrals** (e.g. *novεmber*) more frequently take front suffixes than stems with **back** + **one neutral** (e.g. *hotεl*)

The double-neutral effect

- Stems with **back + two neutrals** (e.g. *november*) more frequently take front suffixes than stems with **back + one neutral** (e.g. *hotel*)


The height effect

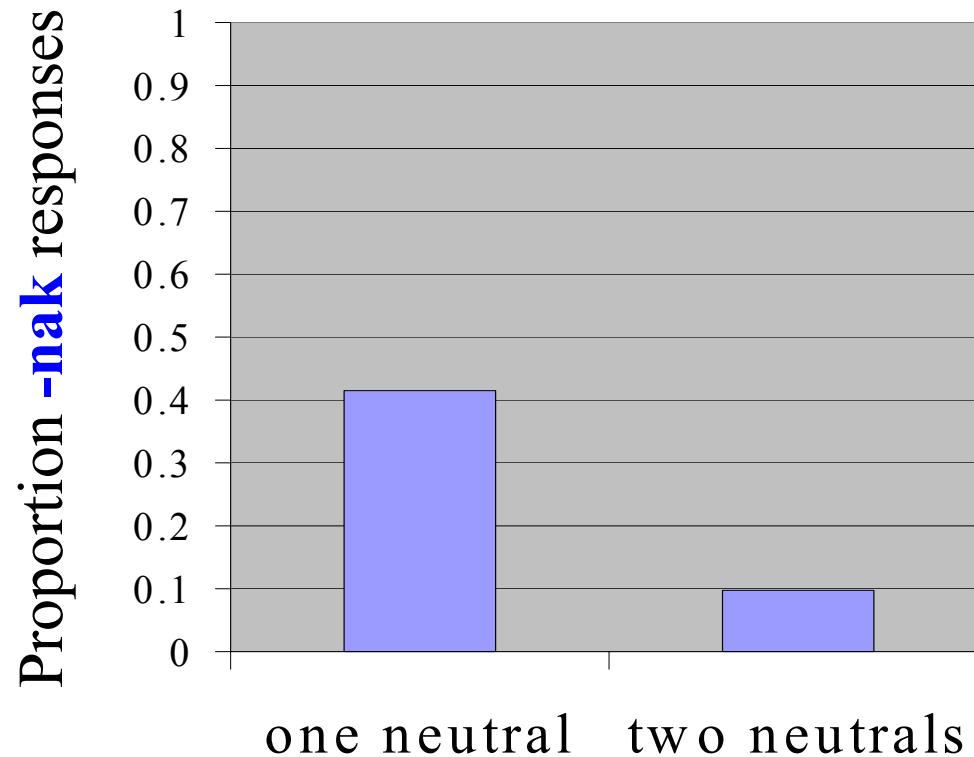
- Stems whose **last neutral vowel** is **lower-mid** (e.g. *hotel*) take front suffixes more often than
- stems whose **last neutral vowel** is **mid** (e.g. *ka've:*);
- which take front suffixes more often than stems whose **last neutral vowel** is **high** (e.g. *papir*).


Word specificity

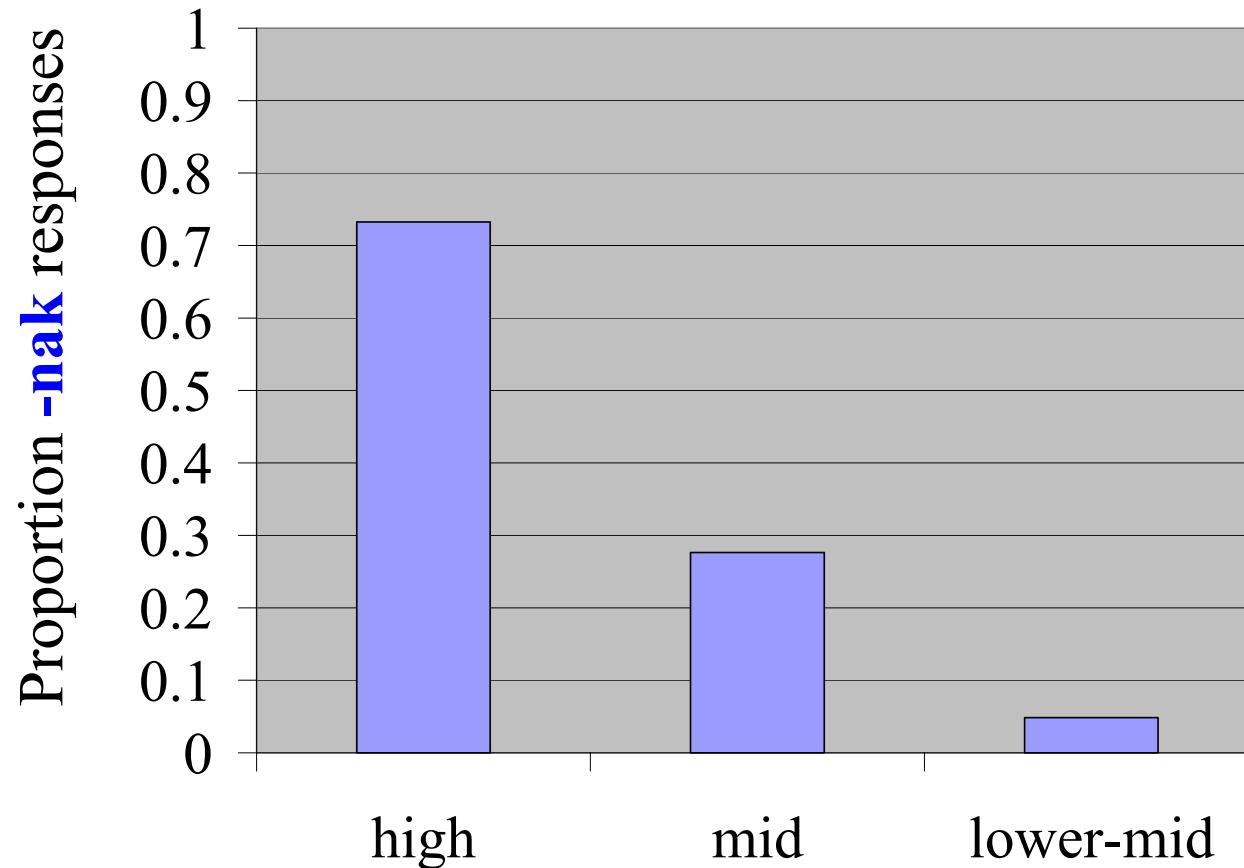
- These claims are made about the lexicon as a whole.
- Most individual stems always take ***-nak*** or always ***-nek***.
- The effects emerge only when you **aggregate** forms across the phonological category.

Verifying the double-neutral effect

Verifying the height effect


Why would such data matter?

- Claim: these patterns are not lost on the Hungarian language learner; they are apprehended and internalized.
- Evidence comes from an experiment: given novel (“wug”) forms of the relevant phonological shape, speakers behave stochastically, generating **-nak** and **-nek** forms in proportions that match the lexical statistics of Hungarian.


Details of the Wug test

- Subjects provide the dative form of novel, imaginary Hungarian stems, like *hádél*, having the relevant vowel sequences.
- We embedded these in sentence frames intended to elicit the dative; either *hádél-nak* or *hádél-nek*
- Count how many *-nak* and *-nak* responses occur for each wug form (171 native speaker subjects)

The responses of Hungarian speakers, in the aggregate, show a count effect

The guesses of Hungarian speakers, in the aggregate, show a height effect

General picture

- The native speaker possesses a model of the quantitative, as well as qualitative, pattern of the language's paradigms.

Recent work yielding similar conclusions

- Zuraw (2003 in Bod et al., *Probabilistic Linguistics*)
- Albright and Hayes (*Cognition*, 2003)
- Ernestus and Baayen (*Language*, 2003)
- Pierrehumbert (forthcoming, *LabPhon 8*)

Should we ignore such data as “extraphonological”?

- I think there are good reasons not to.
 - The data are very systematic.
 - They are based on natural phonological categories, like vowel height.
 - They are eminently **analyzable** — see analysis sections of papers just cited.
 - The analyses use the **normal tools of phonological theory** (features, harmony constraints, ranking, etc.)
- I also think the burden of proof should fall on whoever proposes to ignore data.

II: MACHINE SEARCHING OF CORPORA FOR GENERALIZATIONS

Reference

- Albright, Adam and Bruce Hayes (2003)
“Rules vs. analogy in English past tenses: a computational/experimental study,” *Cognition* 90: 119-161.
[<http://www.linguistics.ucla.edu/people/hayes/rulesvsanalogy/>]

The project

- **Long term goal:** an automated system that learns the patterns of phonological alternation in paradigms
- **Specific goal:** learn to predict one paradigm member from another.
- **Method:** find the phonological environments of each affix allomorph/segment change, using the algorithm we call *minimal generalization* (Pinker and Prince 1988)
- Application of Albright and Hayes (2003): project **English past tenses** (including irregulars) from their present stems.
- **Test:** can the automated learner's wug-test guesses match those of people?

Example outputs for Wug verbs

- Past tense of *spiling* (the model's rating, on a 0-7 scale):

splung 5.19

splinged 5.14

splang 4.36

- Past tense of *gezz*:

gezzed 6.06

gozz 3.94

Comparing with Wug test data

- Generally good correlations with native speaker ratings gathered in a Wug test:

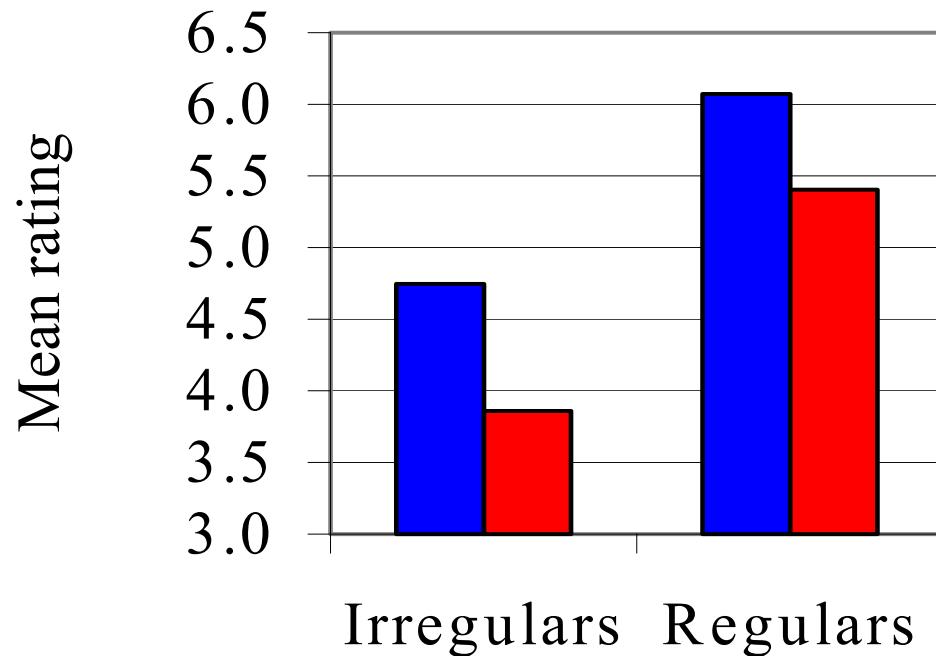
$r = 0.745$ for regulars
 0.570 for irregulars
 0.806 overall

Islands of reliability

- We find that *not all regulars are equal*;
- Certain phonological regions (based e.g. on final consonant) are **hyperregular**, in that Wug verbs occupying them are favored even more than usual by native speakers.

An example of an island of reliability

- Every verb of English that **ends in a voiceless fricative** ([**f**, **θ**, **s**, **ʃ**]) is regular.
- Our rule-learning system notices this, and thus gives a high score (6.22) to wug verbs ending in voiceless fricatives.
- Speakers tacitly know this as well, as our wug-testees showed by their high ratings for Wug past forms like:


blafed 6.67 (scale 1-7)

wissed 6.28

teshed 6.22

More generally

- Native speakers rate wug pasts as higher when they occupy an **island of reliability** than when they **do not**.

Similar results in other languages

- Albright, Adam (2002) Islands of reliability for regular morphology: Evidence from Italian. *Language* 78: 684-709.
- Albright, Adam, Argelia Andrade and Bruce Hayes (2001) Segmental environments of Spanish diphthongization. *UCLA Working Papers in Linguistics* 7, 117-151.
[<http://www.linguistics.ucla.edu/people/hayes/Segenvspandiph/>]
- These studies, like those cited earlier, indicate a richer knowledge of the inflectional pattern than previous research has posited.

III. THE ARTIFICIAL-LANGUAGE PARADIGM

Is UG testable?

- The hypothetical question:

“Would a language with these properties be learnable?”

is common among linguists concerned with questions of Universal Grammar.

- This question is perhaps not as hypothetical as it used to be—due to **artificial-language learning experiments**.

Form of the experiments

- Construct **miniature languages** that contrast with respect to the relevant properties.
- Give subjects a chance to learn the languages.
- Success/failure, or just relative difficulty, can be informative.

Colin Wilson's experiment

- Reference:
 - 2003. Experimental investigation of phonological naturalness. In G. Garding and M. Tsujimura (eds.), *West Coast Conference on Formal Linguistics 22*. Cambridge, MA: Cascadilla Press, 533-546.
- Subjects were given one of two artificial languages:
 - the **nasal harmony** language
 - the **“nasals after velars”** language

The Nasal Harmony language: sample words

[dume-na]	[uko-la]
[binu-na]	[dige-la]
	[suto-la]
	[dabu-la]

- This is a **phonologically natural** language
- Real-life parallels in Lamba, Nyangumarda, Ulithian

The “Nasals after Velars” language: sample words

[uko-**na**]

[dige-**na**]

[suto-**la**]

[dabu-**la**]

[dume-**la**]

[binu-**la**]

- This is a **phonologically unnatural** language, without real-life parallels.

Training and testing the subjects

- **Training:** 20 items, each presented twice
 - Task: *remember these words*
- **Testing:** 80 items, of which 20 old and 60 new
 - Task: *have you heard this word before?*
- Half the new test items were “grammatical” in the training language; the other half “ungrammatical”.

Results

- **Nasal harmony language:**
 - With significantly greater than chance frequency, subjects were likely to think that new items that were “grammatical” in the training language were words they had heard before.
- **“Nasals after velars” language:**
 - No significant effect

Wilson's interpretation

“The results … provide experimental support for the claim, widely held in theoretical phonology, that certain process types have a privileged cognitive status.”

- Elaborating: either
 - **phonetic naturalness**, or
 - the basis in a **logical identity relation** makes the phonologically “natural” language learnable.
- People are not arbitrary inductive sponges.

Some other recent artificial language experiments

- Pater and Tessier (2003)
- Nowak et al. (2003)
- Peperkamp and Dupoux (in press)

These vary in whether they found the UG effect they were looking for.

IV. PHONOLOGICAL EXPERIMENTS: INFLECTING THE UNINFLECTABLE

Reference

- Zuraw, Kie (2005) “Cluster splittability in Tagalog: corpus and survey evidence,” paper given at the 13th Meeting of the Austronesian Formal Linguistics Association, UCLA, Los Angeles, CA.

Premises of the method

- Borrowings are often **indeclinable**, lacking inflected forms.
- Suppose we persuade speakers to go ahead and inflect them.
- If the borrowings have novel stem shapes, we will see what principles guide speakers in extending their grammar into new territory...

The puzzle of cluster-splitting infixation

- Example:
 - Tagalog *gradwet* ‘graduate’ receives the **-um-** infix as either:

gr-**um**-adwet

or

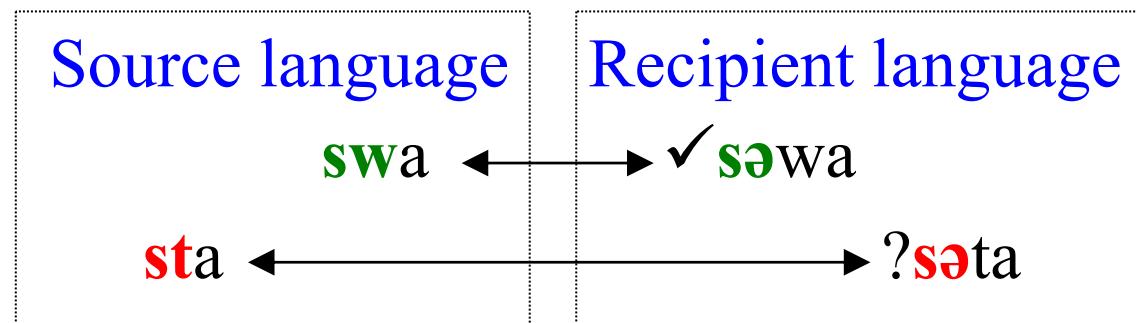
g-**um**-radwet

- Questions:
 - Why are both outcomes possible?
 - What factors favor the competing outcomes?

Background: typology of cluster-splitting epenthesis

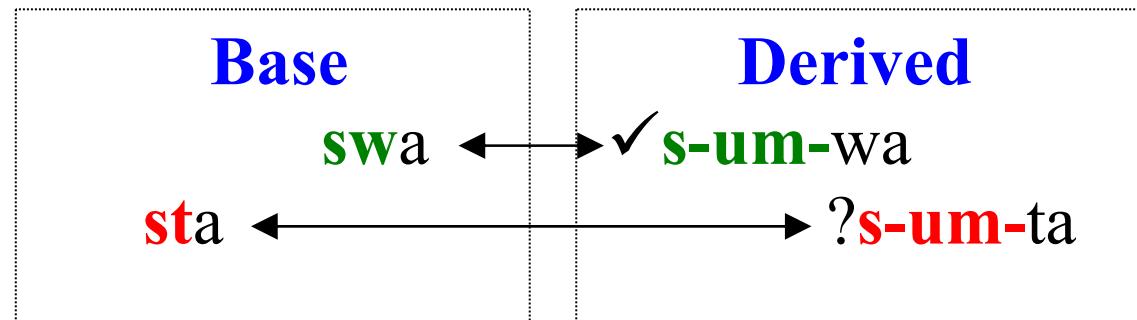
- Fleischhacker (2002) studied the related phenomenon of **epenthesis in loanword adaptation** (sta → səta, əsta)
- She found a cross-linguistic **hierarchy of splittability** for *sibilant + consonant* clusters:

where


S = sibilant

T = stop

W = glide

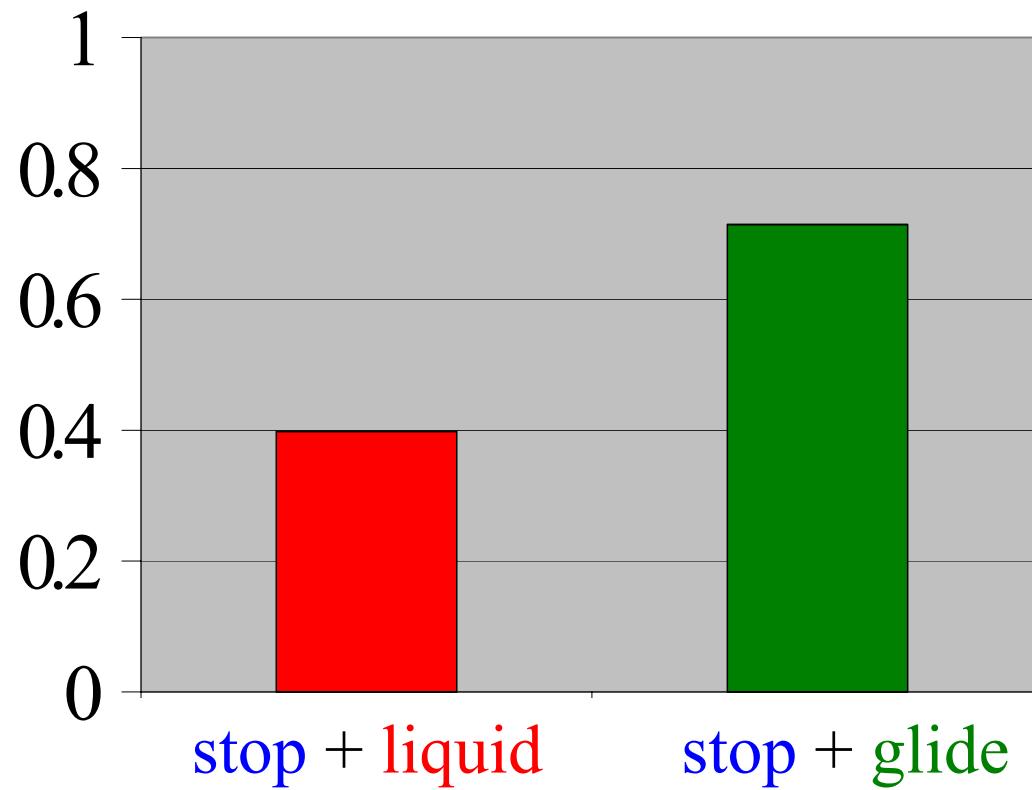

Fleischhacker's explanation

- Crucial factor is **perceptual similarity**
- Loan adaptation favors maintaining perceptual similarity to the source (Peperkamp 2004)
- Release of S into a **sonorous** consonant is perceptually closer to release into a vowel, then release into a nonsonorous consonant would be

Zuraw, adapting Fleischhacker

- Phonological constraints that guide **infixation** are also sensitive to similarity: here, **based-derived** similarity.

Prediction: sonority effects on cluster-splitting infixation


- The higher the sonority of C_2 in C_1C_2 , the more likely infixes should be placed / $C_1_\underline{C_2}$ (and not / $C_1\underline{C_2}_$).

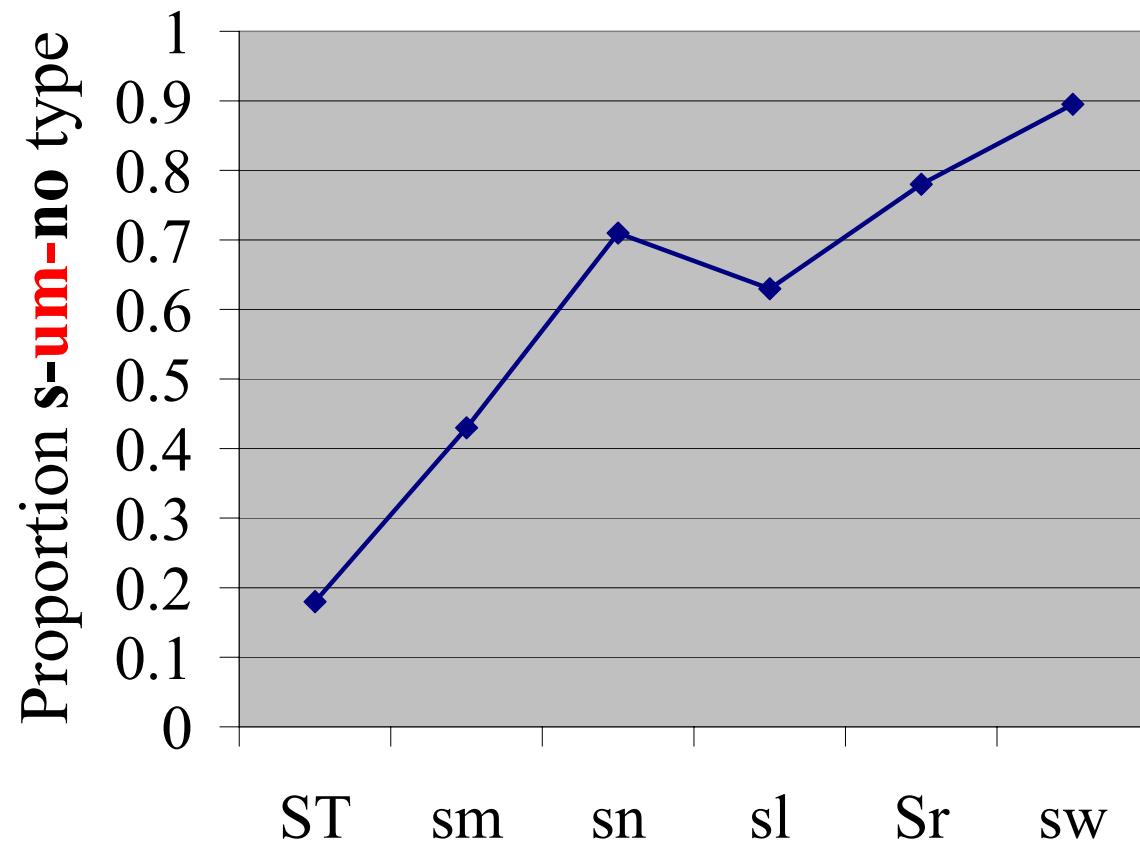
Confirmation: corpus study

- Basis: 20 million Tagalog words gathered from the Web
- Next slide: percentage split by infix: *stop* + *liquid* vs. *stop* + *glide*

l

Percentage split by infix: stop + liquid vs. stop + glide

Confirmation II: Wug test


- Tagalog speakers generally treat sC words with a prosthetic vowel ([iskul]), however...
- They “sometimes use non-prothesized forms as isolated words, but very rarely with infixation”—i.e. they are largely indeclinable.
- Hence if a speaker is asked to epenthesize into a non-prothesized sC stem, she must **extend her existing grammar** to decide where to put the infix:

sno ‘snow’ → s-**um**-no, sn-**um**-o

Testing by long distance over the Web

- Zuraw designed software to administer a Wug test over the Web, eliciting:
 - preference ratings (scale: 1-7) scale for novel forms like **s-um-no** vs. **sn-um-o**.

Results: preferred epenthesis location by cluster type

Zuraw's interpretation

- The speakers, acting in novel circumstances, chose the infix location that would **maximize phonetic similarity** of infixated form to base; i.e. when **C₂** is more sonorous.

Zuraw's proposed inference

“Not all imaginable grammars are equally good from the learner/speaker’s point of view”

- Specifically, the principle of phonetic similarity guides native speakers in their active grammatical behavior.
- It cannot be reduced to an “error factor”, found only in the diachronic evolution of a language.
- Zuraw cites Ohala (1981), Blevins (2004) as among the works defending a diachronic, error-based approach.

SUMMARY AND CONCLUSION: THE ROLE OF NEW DATA SOURCES

What were the “favorite facts”?

- There were four:
 - Speakers **project lexical variation into output variation**, when generating new forms (Hungarian).
 - This is true even when the lexical variation involves **detailed environments** (English past tense islands).
 - A “**natural**” (nasal harmony) language proves learnable in circumstances where a comparable unnatural language is not.
 - Tagalog speakers **follow a principle of phonetic similarity** when they are asked to extend the native pattern of infixation.

What where might further work along these lines go?

- I would like to see it test **specific formal proposals in phonological theory**.
- The material discussed here mostly bears on very general issues, but with the techniques established it should not be hard to move on to more specific questions.

Final conclusions

- The proper stance toward new kinds of facts in phonology is **enthusiastic receptivity** (maintaining of course the same standards of rigor we observe elsewhere)
- The “classical” data sources — elicitation, grammars — and “classical” forms of formal analysis will continue to be vital, and central, to our field
- But a broader data perspective is important to the continuing scientific progress of phonology.

Thank you

For reference list, comments, and any afterthought queries

please send email to bhayes@humnet.ucla.edu

Some references

- Blevins, Juliette 2004. *Evolutionary Phonology*. Cambridge: Cambridge University Press.
- Ernestus, Miriam and Harald Baayen (2003). Predicting the unpredictable: Interpreting neutralized segments in Dutch, *Language* 79, 5-38
-
- Nowak, Paweł, Anne Pycha, Eurie Shin & Ryan Shosted. 2003. Phonological rule learning and its implications for a theory of vowel harmony. *WCCFL* 22.
- Ohala, John J. 1981. The listener as a source of sound change. In: C. S. Masek, R. A. Hendrick, & M. F. Miller (eds.), *Papers from the Parasession on Language and Behavior*. Chicago: Chicago Ling. Soc. 178 - 203.
- Pater, J. and A.-M. Tessier. 2003. Phonotactic Knowledge and the Acquisition of Alternations. In M.J. Solé, D. Recasens, and J. Romero

(eds.) *Proceedings of the 15th International Congress on Phonetic Sciences, Barcelona*. 1777-1180.

- Peperkamp, Sharon (2004) A psycholinguistic theory of loanword adaptations. *Proceedings of the 30th Annual Meeting of the Berkeley Linguistics Society*.
- Pierrehumbert, J. (forthcoming) An Unnatural Process. *Laboratory Phonology* 8, Mouton de Gruyter.
- Pinker, S. & Prince, A. (1988) On language and connectionism: Analysis of a parallel distributed processing model of language acquisition. *Cognition* 28, 73-193.
- Wilson, Colin. (2003). Experimental investigation of phonological naturalness. In G. Garding and M. Tsujimura (eds.), *West Coast Conference on Formal Linguistics* 22. Cambridge, MA: Cascadilla Press, 533-546.
- Zuraw, Kie (2005) “Cluster splittability in Tagalog: corpus and survey evidence,” paper given at the 13th Meeting of the Austronesian Formal Linguistics Association, UCLA, Los Angeles, CA.