Learning-Theoretic

Linguistics: Some Examples
from Phonology

Bruce Hayes
Department of Linguistics
UCLA




Relation of this talk to this session

O ’m not an expert on PDP at all! Inviting me
here was quite a stretch.

0 Common theme: learning about language
through computational modeling.
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_— ]
Some PDP models

Letter perception MccClelland and Rumelhart (1981),
Rumelhart and McClelland (1982)

Word recognition and naming seidenberg, and
McClelland (1989)

InﬂeCtiOHal morphOlOgy Rumelhart and McClelland
(1986)

SpeeCh perception McClelland and Elman (1986)

Phonetic Categories Vallabha et al. (2007)
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Linguistics 1in cognitive science

- We’re externally famous for taking hard-line
nativist views.

=  As we view ourselves: obsession with
language data and 1ts patterning.
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A bit of generative linguistics

0 The logical problem of language acquisition 1s

at the core of linguistic theory (sce, e.g. Chomsky 1965,
Ch. 1)

O Premise: language acquisition 1s an
extraordinary feat

0 Proposed explanation: Universal Grammar +
learning mechanisms
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_— ]
Kinds of UG

0 Hard UG: Grammatical principles in the
genome

O Soft UG: Aspects of language shaped by
human nature, e.g. phonetically-grounded
phonology (e.g. Hayes, Kirchner and Steriade 2004)
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_— I
The modeling program for linguistic

theory

0 Learning model — perhaps with UG in it

0 Data corpus — approximate what children
hear

0 Test the grammars the model learns — let it
act as an experimental subject.
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_— |
Modeling with constraint-based

grammars

0O Permits direct access to key 1deas of linguistic
theory

0 Easy diagnosis of the learned system
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_— |
Embedding constraint-based grammars

In a quantitative framework

O I currently use maxent grammars (Goldwater and
Johnson 2003)

0O Every constraint gets a weight reflecting its
strength; simple math assigns probabilities to
candidates, based on weights and violations.

0 Weights are set during learning, using some
of the same math as PDP (Smolensky and Legendre 2006)
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_— I
Why deploy constraints 1n a

quantitative model?

0O The data demand it.

0 Idealizing away gradience was a useful
research strategy in the earlier days of
generative linguistics; nowadays we can aim
higher. (Seee.g Bod et al. 2003, Fanselow et al. 2006.)
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What emerges when modeling 1s
combined with experimentation?

[. The model mig
language than t|

ht learn more about the
e linguists have.

II. The model mig

nt provide a different

interpretation of an experiment than the
experimentalists proposed.

[II. The model might work better when you put

some UG 1n it.
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I. The model might learn more about
the language than the linguists have

0 Example: Islands of reliability
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Islands of reliability in English past
tenses

0 English has ca. 350 verbs ending 1n a
voiceless fricative ([f, 6, s, J]).

0 All are regular.
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A model that can learn 1slands of
reliability

O Albright and Hayes (2002): a quantitative model for
morphological and phonological learning, applied
(2003) to English past tenses.

O Fed 4000 present-past pairs, 1t learned many
constraints, including “Verbs ending 1n a voiceless
fricative must take -ed.”

O The model’s quantitative metric says this is a great
constraint: 100% accurate, 350 examples.
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Experiment

O A classical “wug test” with rating data.

0O The participants gave very high ratings to
forms in islands, e.g. blafed, wissed, teshed.

O Statistics: a bigger effect than poor
performance of competitors (blofe) would
produce.

0O Similar 1slands have been demonstrated for
other languages (albright 2002)
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Consequences

0 People know more than the linguistically-
standard just-one-rule-for-regulars analysis
(e.g., Pinker 1999).

O In general: I think traditional linguistics often
underestimates what people know about their
language.
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What emerges when modeling 1s
combined with experimentation?

[. The model mig
language than t|

ht learn more about the
ne linguists do.

II. The model mig

1t provide a different

interpretation of an experiment than the
experimentalists proposed.

[II. The model might work better when you put

some UG 1n it.
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The Sonority Hierarchy Projection
Effect

0O This 1s a possible “UG effect” — people know

what they couldn’t learn. (Berent et al. 2007, Berent et al.
2008)
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Sonority sequencing in consonant
clusters

O [tra]  a good sonority rise, quite common
among languages

tma] not all that much sonority rise, rare
‘mna] sonority tie, rarer still

Ima] modest “reversed sonority”’; rarer still

O O 0O 0O

Iba]  a horrible sonority reversal, very rare
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Ratings of zero-frequency clusters
match language typology

0 from Daland et al. (1n progress):
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...and not just 1n our data

0O Other ratings studies Aibright (2007)

O Perception/production data Berent et al. 2007, Berent et
al. 2008)
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_— |
Arguing for UG based on the Sonority

Projection Effect

0O If the sonority sequencing principle were not
in UG, all clusters of zero frequency would be
treated equally.
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_— |
A computational learner for

phonotactics

0 Hayes and Wilson (2008)

0O Finds constraints inductively, learning from a
phonetically-transcribed lexicon.

0 Weights the constraints by maxent principles.

O Resulting grammar assigns a well-formedness
value to any novel phonetic string.
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_— |
Using the model to study the sonority

hierarchy projection effect

0 Daland et al. trained this model on 18,000
transcribed English words.

0 They tested 1t on the same forms given to the
experimental participants.
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Hayes-Wilson model predicts sonority
projection
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How does 1t do 1t?

O It knows the features that represent sonority, and
generalizes from the real-word clusters ([tr], etc.)

it hears.
[sonorant] | [approximant] | [vocalic]
1] - - -
lm, n] + — —
[1] + + —
1] + + +
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_ 1
Upshot

0 The UG needed to learn the Sonority
Projection Effect is perhaps not as substantial
as an innate sonority sequencing principle.

0 Knowing features let you project the pattern
from the sonority-respecting clusters you
already have.
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What emerges when modeling 1s
combined with experimentation?

[. The model mig
language than t|

ht learn more about the
ne linguists do.

II. The model mig

nt provide a different

interpretation of an experiment than the
experimentalists proposed.

[II. The model might work better when you put

some UG 1n it.
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Eftects of natural vs. unnatural
constraints

O Source: Hayes and White (1n progress)
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Naturalness 1n phonological constraints

0 Phonologists observe the same constraints in
phonologies the world over.

0 A widespread view: such constraints are part

of the language faculty, “m UG.” (Prince and
Smolensky 1993)

0 Soft-UG variant: the relevant constraints are
those that help make speech easier to
articulate and perceive.
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_— |
Goal

0 Test some very surprising constraints learned
by the Hayes/Wilson model

0 They look unnatural (no phonetic or
typological support).
0 They fit the data of English very well.
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Sample stimulus pairs

0 Test form violates a natural constraint: canifl
vs. canift.

O Test form violates a constraint induced by
HW model and lacking in phonetic/
typological support: foushert vs. fousert.
(Constraint: no diphthongs before palato-
alveolar fricatives).
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_— ]
Method

0O Magnitude estimation (Bard et al. 1996)

O Simultaneous spoken and orthographic input
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Main result

0 Massive effects for natural constraints (canifl
rated horrible, canift fine)

0 Small nonsignificant effect for unnatural
constraints (foushert and fousert rated
similarly)
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What does 1t mean?

0 We have sought extensively for an inductive
explanation: how could the model be
modified to devalue the unnatural constraints?

0 This doesn’t seem to be working. ..

0O Letting the model select from constraints
based on Steriade’s (1999) phonetics-based
UG seems to be working rather well.
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_ 1
Upshot

0 We suggest that the ratings reflect not just the
patterns of the existing lexicon, but also UG
principles based on phonetic naturalness.
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In conclusion

0 Three practical suggestions
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Link experiments to modeling

0O Models can locate the stimuli that best test a

hypothesis (all three experiments described
here)

0 Models avoid vagueness in interpreting the
results.
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_
Posting data

0 Modelers would love to test their models
against published experiments — but the data
are seldom available.

0 The web would make 1t easy to fix this.

August 13, 2010 Hayes, Learning-theoretic linguistics 39



Posting software

0 When first programmed, learning models tend
to be messy, accident-prone, and user-
unfriendly.

0 It 1s toil to turn them into software others can
use.

0 But doing this would make the models more
widely useful and testable.
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_— 1
Thank you

0 For a downloadable version of these slides
included the cited references, please visit
http://www.linguistics.ucla.edu/people/hayes/.
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