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Relation of this talk to this session


 
I’m not an expert on PDP at all!  Inviting me 
here was quite a stretch.



 
Common theme:  learning about language 
through computational modeling.
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Some PDP models


 
Letter perception  McClelland and Rumelhart (1981), 

Rumelhart and McClelland (1982)



 
Word recognition and naming Seidenberg, and 
McClelland (1989)



 
Inflectional morphology Rumelhart and McClelland 
(1986)



 
Speech perception McClelland and Elman (1986)



 
Phonetic categories Vallabha

 

et al. (2007)
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Linguistics in cognitive science


 
We’re externally famous for taking hard-line 
nativist

 
views.



 
As we view ourselves:  obsession with 
language data and its patterning.
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A bit of generative linguistics


 
The logical problem of language acquisition is 
at the core of linguistic theory (see, e.g. Chomsky 1965, 
Ch. 1)



 
Premise:  language acquisition is an  
extraordinary feat



 
Proposed explanation:  Universal Grammar + 
learning mechanisms
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Kinds of UG


 
Hard UG:  Grammatical principles in the 
genome



 
Soft UG:  Aspects of language shaped by 
human nature, e.g. phonetically-grounded 
phonology (e.g. Hayes, Kirchner and Steriade 2004)
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The modeling program for linguistic 
theory


 
Learning model –

 
perhaps with UG in it



 
Data corpus –

 
approximate what children 

hear


 
Test the grammars the model learns –

 
let it 

act as an experimental subject.
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Modeling with constraint-based 
grammars


 
Permits direct access to key ideas of linguistic 
theory



 
Easy diagnosis of the learned system



August 13, 2010 Hayes, Learning-theoretic linguistics 9

Embedding constraint-based grammars 
in a quantitative framework


 
I currently use maxent grammars (Goldwater and 
Johnson 2003)



 
Every constraint gets a weight reflecting its 
strength; simple math assigns probabilities to 
candidates, based on weights and violations.



 
Weights are set during learning, using some 
of the same math as PDP (Smolensky and Legendre 2006)
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Why deploy constraints in a 
quantitative model?


 
The data demand it.



 
Idealizing away gradience was a useful 
research strategy in the earlier days of 
generative linguistics; nowadays we can aim 
higher.  (See e.g. Bod

 

et al. 2003, Fanselow et al. 2006.)
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What emerges when modeling is 
combined with experimentation?
I.

 
The model might learn more about the 
language than the linguists have.

II.
 
The model might provide a different 
interpretation of an experiment than the 
experimentalists proposed.

III.
 

The model might work better when you put 
some UG in it.
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I. The model might learn more about 
the language than the linguists have


 
Example:  Islands of reliability
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Islands of reliability in English past 
tenses


 
English has ca. 350 verbs ending in a 
voiceless fricative ([f, θ, s, ʃ]).



 
All are regular.
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A model that can learn islands of 
reliability


 

Albright and Hayes (2002):  a quantitative model for 
morphological and phonological learning, applied 
(2003) to English past tenses.



 

Fed 4000 present-past pairs, it learned many 
constraints, including “Verbs ending in a voiceless 
fricative must take -ed.”



 

The model’s quantitative metric says this is a great 
constraint:  100% accurate, 350 examples.
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Experiment


 
A classical “wug test”

 
with rating data.



 
The participants gave very high ratings to 
forms in islands, e.g. blafed, wissed, teshed.



 
Statistics:  a bigger effect than poor 
performance of competitors (blofe) would 
produce.



 
Similar islands have been demonstrated for 
other languages (Albright 2002)
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Consequences


 
People know more than the linguistically-

 standard just-one-rule-for-regulars analysis 
(e.g., Pinker 1999).



 
In general:  I think traditional linguistics often 
underestimates what people know about their 
language.
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What emerges when modeling is 
combined with experimentation?
I.

 
The model might learn more about the 
language than the linguists do.

II.
 
The model might provide a different 
interpretation of an experiment than the 
experimentalists proposed.

III.
 

The model might work better when you put 
some UG in it.
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The Sonority Hierarchy Projection 
Effect


 
This is a possible “UG effect”

 
–

 
people know 

what they couldn’t learn.  (Berent et al. 2007, Berent et al. 
2008)



August 13, 2010 Hayes, Learning-theoretic linguistics 19

Sonority sequencing in consonant 
clusters


 
[tra]

 
a good sonority rise, quite common 
among languages



 
[tma]

 
not all that much sonority rise, rare



 
[mna]

 
sonority tie, rarer still



 
[lma]

 
modest “reversed sonority”; rarer still



 
[lba]

 
a horrible sonority reversal, very rare 
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Ratings of zero-frequency clusters 
match language typology


 
from Daland et al. (in progress):
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…and not just in our data


 
Other ratings studies Albright (2007)



 
Perception/production data (Berent et al. 2007, Berent et 
al. 2008)
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Arguing for UG based on the Sonority 
Projection Effect


 
If the sonority sequencing principle were not 
in UG, all clusters of zero frequency would be 
treated equally.
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A computational learner for 
phonotactics


 
Hayes and Wilson (2008)



 
Finds constraints inductively, learning from a 
phonetically-transcribed lexicon.



 
Weights the constraints by maxent principles.



 
Resulting grammar assigns a well-formedness 
value to any novel phonetic string.
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Using the model to study the sonority 
hierarchy projection effect


 
Daland et al. trained this model on 18,000 
transcribed English words.



 
They tested it on the same forms given to the 
experimental participants.
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Hayes-Wilson model predicts sonority 
projection
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How does it do it?


 

It knows the features that represent sonority, and 
generalizes from the real-word clusters ([tr], etc.) 
it hears.

[sonorant] [approximant] [vocalic]
[t] – – –

[m, n] + – –
[l] + + –
[r] + + +
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Upshot


 
The UG needed to learn the Sonority 
Projection Effect is perhaps not as substantial 
as an innate sonority sequencing principle.



 
Knowing features let you project the pattern 
from the sonority-respecting clusters you 
already have.
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What emerges when modeling is 
combined with experimentation?
I.

 
The model might learn more about the 
language than the linguists do.

II.
 
The model might provide a different 
interpretation of an experiment than the 
experimentalists proposed.

III.
 

The model might work better when you put 
some UG in it.
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Effects of natural vs. unnatural 
constraints


 
Source:  Hayes and White (in progress)
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Naturalness in phonological constraints


 
Phonologists observe the same constraints in 
phonologies the world over. 



 
A widespread view:  such constraints are part 
of the language faculty, “in UG.”

 
(Prince and 

Smolensky 1993)



 
Soft-UG variant:  the relevant constraints are 
those that help make speech easier to 
articulate and perceive.
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Goal


 
Test some very surprising constraints learned 
by the Hayes/Wilson model



 
They look unnatural (no phonetic or 
typological support).



 
They fit the data of English very well.
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Sample stimulus pairs


 
Test form violates a natural constraint:  canifl 
vs. canift.



 
Test form violates a constraint induced by 
HW model and lacking in phonetic/ 
typological support:  foushert vs. fousert.  
(Constraint:  no diphthongs before palato-

 alveolar fricatives).
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Method


 
Magnitude estimation

 
(Bard et al. 1996)



 
Simultaneous spoken and orthographic input
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Main result


 
Massive effects for natural constraints (canifl 
rated horrible, canift fine)



 
Small nonsignificant

 
effect for unnatural 

constraints (foushert and fousert rated 
similarly)
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What does it mean?


 
We have sought extensively for an inductive 
explanation:  how could the model be 
modified to devalue the unnatural constraints?



 
This doesn’t seem to be working…



 
Letting the model select from constraints 
based on Steriade’s (1999) phonetics-based 
UG seems to be working rather well.
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Upshot


 
We suggest that the ratings reflect not just the 
patterns of the existing lexicon, but also UG 
principles based on phonetic naturalness.
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In conclusion


 
Three practical suggestions
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Link experiments to modeling


 
Models can locate the stimuli that best test a 
hypothesis (all three experiments described 
here)



 
Models avoid vagueness in interpreting the 
results.
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Posting data


 
Modelers would love to test their models 
against published experiments –

 
but the data 

are seldom available.


 
The web would make it easy to fix this.
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Posting software


 
When first programmed, learning models tend 
to be messy, accident-prone, and user-

 unfriendly.


 
It is toil to turn them into software others can 
use.



 
But doing this would make the models more 
widely useful and testable.
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Thank you


 
For a downloadable version of these slides 
included the cited references, please visit 
http://www.linguistics.ucla.edu/people/hayes/.
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