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Abstract

Recent experimental work offers evidence that infants become aware of suffixes at a remarkably
early age, as early as 6 months for the English suffix -s. Here, we seek to understand this ability
though the strategy of computational modeling. We evaluate a set of distributional learning models
for their ability to mimic the observed acquisition order for various suffixes when trained on a cor-
pus of child-directed speech. Our best-performing model first segments utterances of the corpus into
candidate words, thus populating a proto-lexicon. It then searches the proto-lexicon to discover affixes,
making use of two distributional heuristics that we call Terminus Frequency and Parse Reliability. With
suitable parameter settings, this model is able to mimic the order of acquisition of several suffixes, as
established in experimental work. In contrast, models that attempt to spot affixes within utterances,
without reference to words, consistently fail. Specifically, they fail to match acquisition order, and they
extract implausible pseudo-affixes from single words of high token frequency, as in [pi-] from peeka-
boo. Our modeling results thus suggest that affix learning proceeds hierarchically, with word discovery
providing the essential basis for affix discovery.

Keywords: Infant language acquisition; Morphology; Suffixes; Computational modeling of language
acquisition; Distributional learning; Morpheme discovery

1. Introduction

Acquiring a language involves discovering its smallest meaningful units, that is, mor-
phemes. Morphemes can be stems (as in mute in unmuting), or they can be affixes, which
in English include prefixes (like un-) and suffixes (like -ing). In many languages, affixes can
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act as building blocks of syntax, and learning them is likely one of the first steps that infants
take in acquiring syntactic knowledge. Affixes have long been studied by cognitive scien-
tists, and their role in language comprehension and production is now well-established in the
literature; for overviews, see Amenta and Crepaldi (2012) and Cohen-Goldberg (2013).

Our research is part of the general effort by linguists and other cognitive scientists to under-
stand how infants discover these basic building blocks. In this article, we use computational
modeling to help identify the mechanisms by which infants could discover the morphemes of
their language. The models we consider operate on unsegmented infant-directed speech, can
be fitted to existing experimental data, and generate novel testable predictions about infant
behavior. Our data all involve affixes of English.

Classical work on the acquisition of affixes has typically examined production, with data
coming from young children rather than infants. This research (e.g., Brown, 1973; Davies,
Rattanasone, & Demuth, 2020; Golinkoff, Hirsh-Pasek, & Schweisguth, 2001; Soderstrom,
Wexler, & Jusczyk, 2002; Davies, Rattanasone, & Demuth, 2017; van Heugten & Johnson,
2011) has shown that English-learning children begin to produce affixes in the second year
of life. However, subsequent experiments targeting the perception of affixes have shown that
infants have at least some knowledge of affixes long before they can produce them.

Using perception experiments, Willits, Seidenberg, and Saffran (2014) found that English-
learning 7.5-month-olds are better able to notice the familiar verbs kiss, give, drink, and
walk when they have been familiarized with the -ing form of these verbs (kissing, etc.). By
15 months, infants show a preference for lists of nonce words suffixed with -ing, but not with a
pseudo-morpheme -ot (Mintz, 2013). Similar findings have been reported for infants learning
French (Marquis & Shi, 2012).

More recent findings show that infants can be aware of affixes even earlier than this. With
data from ∼500 infants, Kim and Sundara (2021), using a method similar to that of Willits
et al., showed that English-learning 6-month-olds become more likely to detect the novel stem
bab when they have been trained earlier on sentences that include the affixed form babs; that
is, bab-s. At the same age, they do not detect bab when trained on novel words like babsh
(bab, plus nonsuffix -sh), indicating that they are aware of the status of -s as a suffix. Further
experiments showed that while 6-month-old infants are not aware of the suffixes -ing and -ed,
they shortly do become aware of them: -ing at 8 months (roughly matching Willits et al.), and
-ed somewhat later.

Given that the stems tested by Kim and Sundara are not words of English, it is unlikely
that infants are detecting a suffix with reference to meaning. Instead, it is likely that infants
obtain this information via some form of distributional learning. Since the appearance of a
seminal paper by Saffran, Newport, and Aslin (1996), the application of distributional learn-
ing models to language has been a major research topic; see, for instance, the surveys in Aslin
and Newport (2014) and Finley (2018). Among these learning models are models capable of
detecting affixes. In this article, we assess such models according to their ability to mimic the
infant developmental timeline for affix learning as attested in the experimental literature.

The research we report here blends influences often thought to be mutually opposing. In
particular, we follow an increasing trend within theoretical linguistics to adopt distributional
learning as an account of language acquisition.1 In additional to working well, distributional
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learning models generate highly detailed predictions that lend themselves to a traditional
research ethos within linguistics, namely, close scrutiny of the details of linguistic patterns.
Indeed, below we will be paying much attention to our models’ treatment of specific affixes
and affix candidates. From a larger perspective, we are followers of a point of view put forth
by Dupoux (2018) and others, who advocate computational modeling as a way of reverse-
engineering the process of language acquisition.

1.1. Evaluating the models against infant data

To achieve our purpose, we must evaluate the computational models in a nonstandard way.
A typical approach in computational modeling, say, of detecting affixes, is to seek models
that are very accurate at the final state, finding all and only the actual affixes of the target
language. For this purpose, model evaluation is typically based on metrics such as precision,
recall, and F-score. This method of model comparison tells us which models best align with
(the researcher’s intuitions about) adult speech segmentation, but not about which models best
approximate the course of acquisition in infants. Our own interest, in contrast, is in identifying
the mechanisms by which infants might discover suffixes, so we evaluate model success based
on whether or not their performance successfully matches the human developmental timeline.

The models we examine are unsupervised, in the sense that they work directly from cor-
pora; they are not given (for example) singular-plural pairs or any similar form of supervised
instruction. To train our models, we chose a standard corpus of phonemically transcribed
infant-directed speech and extracted from it a series of subcorpora of increasing size. We pre-
sented the series of subcorpora to each of our models, and assessed the behavior of each at
each point. This procedure is meant to simulate the gradual increase in language experience
as an infant gets older. As a result, we can derive developmental predictions from the models:
a successful model should capture the fact that infants, receiving an ever-growing sample of
data and processing it with principles assumed in the model, should become aware of the
affixes in a particular order. Models are evaluated, in part, by how their own learning paths
match the order in which English-learning infants are observed to discover suffixes.

With this method of evaluation, we can also make explicit predictions about acquisition
order for affixes not yet experimentally studied by examining model outputs. This is neces-
sary from both a scientific and a practical point of view. Concerning the latter, we note that
experimentation with infants is very expensive in terms of both money and time; a model
that can reasonably approximate the infants’ developing morphological knowledge can help
advance the research program by pinpointing the most potentially fruitful areas of inquiry.

1.2. Varieties of models

A key focus of this article is a comparison of models embodying two alternative architec-
tures, instantiating distinct hypotheses about how infants learn affixes. In one architecture,
affixes are treated as if they were small words, discovered on a par with the other words of
the language. Since all morphemes, both words and affixes, are discovered in a single layer,
we will call this the flat architecture. In this approach, the spoken sentence Sammy wants out
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would be parsed as shown in (1), with the affixes [-i]2 (diminutive, spelled -y) and [-s] (third
singular present) put on a par with full words like out.

(1) Parsing Sammy wants out in a flat model

Here, the output parse is not annotated in any way for what parts of the string actually are
affixes; this task would have to be carried out, in some unspecified way, with subsequent
processing.

In the other architecture we consider, affixes are treated as parts of words. The model
must include a mechanism of word discovery, which establishes a proto-lexicon, that is, a
list of possible word candidates whose meaning is not necessarily yet known. The affixes
are learned by processing the entries of the proto-lexicon, using a mechanism which may be
distinct from the one employed to discover proto-lexical entries from running speech. We will
call this architecture the hierarchical approach. In the hierarchical approach, Sammy wants
out would be parsed as in (2).

(2) Parsing Sammy wants out in a hierarchical model

To preview our results, we find that at least one hierarchical model (Section 8) provides
a fair match for the time course of acquisition, whereas all of the flat models we were able
to examine proved defective. In particular, the flat models learned the affixes in an order
that fails to match that of English-learning infants (Section 7), and the models are prone to
extract “pseudo-affixes” (like the hypothetical prefix pee- [pi-] in peekaboo) from frequent
words (Section 7.3). In the final sections, we note some yet-unchecked predictions made by
our favored model (Section 11), and address ways in which our model might be improved
(Section 12).

2. The affixes under study

First, it will be helpful to be more precise about the affixes that the infants are acquir-
ing. Following well-studied principles of English phonology (see, e.g., Pinker & Prince,
1988:Section 4.2), two of these affixes take on distinct forms in different contexts, often called
allomorphs, which we describe below.

The affix spelled -s is used for plurals (dogs), possessives (Ernie’s), the third singular
present tense of verbs (wags), and various other uses. In distributional learning, where the
infant is unlikely to be aware of these distinct usages, we treat all the various cases as one
single class. The three allomorphs of -s are phonetic [-s], appearing after voiceless sounds
(cats [kæts]); [-əz], appearing after sibilants (kisses [kɪsəz]); and [-z], appearing elsewhere
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(dogs [dɔgz]). Since the allomorph [-əz] is rare, it will not be treated here; for the distinction
between [-s] and [-z], see Section 9.2. We will refer to this affix (taken as an allomorph group)
as [-z/-s].

The affix spelled -ed is used for regular past tenses (Ernie jumped) and past participles
(Ernie has jumped). It, too, has three allomorphs: phonetic [-t], appearing after voiceless
sounds (kissed [kɪst]); [-əd], appearing after [t] and [d] (patted [pætəd]); and [-d], appearing
elsewhere (hugged [hʌgd]). Like [-əz], the allomorph [-əd] is rare and will not be treated here;
see Section 9.2 for more on the distinction between [-t] and [-d]. We will refer to this affix as
[-d/-t].

The affix spelled -ing ([-ɪŋ]) is used for present participles (Ernie is jumping) and gerunds
(Jumping is fun). For present purposes, we will assume just one allomorph. We will refer to
this affix as [-ɪŋ].

3. The experimental data

We will begin the presentation of our modeling efforts with just a subset of the data, namely,
the three suffixes studied by Kim and Sundara (2021). This work collapsed the two allomorphs
of [-z/-s] and [-d/-t] into single categories, testing them together in the same experiment.
The goal at this modeling stage is to determine, insofar as is possible, the order in which
infants acquire the three target affixes [-z/-s], [-d/-t], and [-ɪŋ]. With this accomplished, we
will confront our model with additional data, involving the separate allomorphs [-z] and [-s]
(Section 9.2) as well as the suffix [-i] (Section 8.6). This procedure, which reflects the order
in which the research was carried out, in essence, enables us to test the model on unseen data.
We will find that the model as originally set up (same parameter values) accommodates the
additional data without difficulty.

The experiments we discuss all employed the Headturn Preference Procedure (Kemler-
Nelson et al., 1995). In the training phase, infants were played a brief monologue that
included multiple instances of a nonce (made-up) word that included the target affix, such
as babs [bæbz]. In the test trials, the infants were played a series of repetitions of the nonce
form alone (bab [bæb]). The amount of time an infant attended to the nonce form in the test
trials served as a measure to indicate whether the infant had detected the affix.

Kim and Sundara (2021) found that 6-month-old infants familiarized with the nonwords
babs and dops listened longer to bab and dop than they did for other nonwords to which they
were not exposed (kell [kɛl] and teep [tip]). Others were exposed to kells [kɛlz] and teeps
[tips], and listened to kell and teep longer than they did for bab and dop, which in this case
served as the controls. This suggests that 6-month-olds are able to isolate the [bæb] of [bæbz]
in the presence of the following [z], and likewise [dɑp] when [s] follows.

A further control was to perform a similar experiment with a nonsuffix, namely, -sh ([-ʃ]).
This obtained a null result, suggesting that the ability of infants to detect bab within babs
is not simply due to their phonological overlap (as in [bæbʃ]), but depends on the infant’s
knowledge that [-z/-s] is a suffix.
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This basic procedure was used to study the three affixes given above ([-z/-s], [-d/-t], [-ɪŋ]).
Infants were tested in a cross-sectional design at the approximate ages of 6, 8, and 10 months,
and the following results were found.

(3) The course of learning for three English suffixes

These results include gaps that can be covered only by extrapolation. In particular, we assume
that infants do not regress in their knowledge, so further work would show the ability to detect
[-z/-s] at 8 months and older, and [-ɪŋ] at 10 months or older. We also assume that the negative
result obtained for the nonaffix [-ʃ] would continue to hold good at all subsequent ages. While
we think these assumptions are reasonable, obviously, it would be helpful for the relevant
experiments to be conducted in the future.

To restate our initial modeling goal: we seek to model the ordering just described, [-z/-s] >

[-ɪŋ] > [-d/-t]. This ordering should emerge as the combined consequence of the model and
the characteristic distribution of these suffixes in utterances accessible to English-learning
infants. Later on, when we have a model in place that is able to fit this basic order, we will
test the model to see if it generalizes to other suffixes and suffix allomorphs.

4. Data for training the models

For our purpose, we needed a set of English-language utterances similar to what might be
heard, or overheard, by English-learning infants. The corpus must be represented in phonetic
transcription, not English orthography, to better reflect young infants’ perceptual experience.4

Here, we employed the Pearl-Brent derived corpus (hereafter, “Pearl-Brent”), from Pearl,
Goldwater, and Steyvers (2010). According to the authors, it “contains child-directed speech
to children between 8 and 9 months old, consisting of 28,391 utterances (96,920 word tokens,
3,213 word types, average words per utterance: 3.4, average phonemes per word: 3.6).”5 The
original corpus was compiled by Brent and Siskind (2001), with the phonemic transcription
added by Pearl et al., and was distributed on CHILDES (MacWhinney, 2000). To this
corpus, we added our own annotation for which suffixes were present. We also examined the
Bernstein-Ratner Corpus (Bernstein-Ratner, 1987) employed by Goldwater, Griffiths, and
Johnson (2009) and other researchers; the pattern of results was similar, so we report just the
Pearl-Brent corpus results here.

When training our models, we followed standard practice in letting the model have access
only to full utterances, with no spaces or hyphens; hence, the model is responsible for dis-
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covering the correct segmentation below the utterance level. For example, the first three utter-
ances in the Pearl-Brent corpus are given below, both as the model sees them and in an ortho-
graphic key.

(4) Sample sentences from the Pearl-Brent corpus

5. Model architectures

In choosing a model approach, we need to consider the specific situation of very young
infants, who know very little about the vocabulary and structure of the language they
encounter. Hence, models that obtain important results for later ages, notably Vitevich and
Storkel (2012) and Jones, Cabiddu, Andrews, and Rowland (2021), are not what is needed
for present purposes (for instance, these models assume input forms already segmented into
words, which is something that we want the model itself to accomplish). The models that fol-
low assume very little prestructuring of the input—it is treated solely as the phoneme streams
of spoken utterances.

5.1. Two modeling strategies: Flat versus hierarchical

In this section, we specify more explicitly the contrast between flat and hierarchical models
laid out in the introduction.

5.1.1. Flat models
A flat model is fed whole utterances, as in (4) above, and discovers all linguistic units at

once, at the finest-grained level; hence, these units can be simple words, stems, or affixes.
The question of how these undifferentiated units get arranged into appropriate hierarchical
structures (affixes and stems form words, words form phrases, etc.) is a task left for later
learning. To give an example, for the utterances in (5), a successful “flat” parse would be as
shown; affixes such as [-i] (-y) and [-s] (-s) are placed on the same footing as words like [aʊt]
out and [dɔg] dog.

(5) Successful “flat” parses for three sentences

Where can models that find such structure be obtained? We have not found computational
models in the literature that deliberately seek flat structure, yet in fact, close approximations
can be found if we look among models that are designed to discover words. It is a widespread

 15516709, 2025, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/cogs.70047 by U

niversity O
f C

alifornia, L
os A

ngeles, W
iley O

nline L
ibrary on [13/03/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



8 of 41 C. M. Breiss et al. / Cognitive Science 49 (2025)

behavior of such models that alongside the words that they discover, there are also a fair
number of affixes.6 For example, the model of Johnson, Pater, Staubs, and Dupoux (2015),
discussed below in Section 5.3, parses the sentence (5a) as [sæmi wɔnt s aʊt], thus finding
an instance of [-z/-s]. Modelers differ as to whether they regard such parses as pernicious
(Goldwater et al., 2009:39) or innocuous (Pearl & Phillips, 2018:17). From our point of view,
however, it is an actual advantage that models intended to discover only words often return
affixes in abundance; it is this trait that makes them usable here as flat models.

The appeal of word-discovery models for use in affix discovery is increased by the fact that
some of them include parameters that govern how fine-grained a parse they return. Thus, the
Johnson et al. (2015) model returns the following three parses of a representative sentence
when its word-length penalty (d) is set to ever higher values:

(6) Changing the word-length penalty d of the Johnson et al. model

It can be seen that at d = 1.44, the model detects neither [-t] nor [-ɪŋ]; at d = 1.55, it detects
[-ɪŋ] but not [-t], and at d = 1.64, it detects both. Thus, for purposes of a “flat” model, as
desired here, it would be sensible to pick d = 1.64.

5.1.2. Hierarchical models
We turn next to what we are calling hierarchical models. Such models aspire to find the full

structure depicted in (7), with both words and their internal structure.

(7) Target structure for a simple hierarchical model: “Sammy wants out”

The process of learning in a hierarchical model is mediated by a proto-lexicon, defined
here as the tentative list of word forms stored by the infant at any particular point of time
during learning. The entries in the proto-lexicon do not necessarily have meanings attributed
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to them; they may simply be distributionally detected units.7 The idea of a proto-lexicon
has come to play a major role in the acquisition and learnability literatures. For instance,
Ngon et al. (2013) find that French-learning infants respond preferentially to sequences
(like [tule]) that are frequent in French but are not words—these plausibly are erroneous
proto-lexical entries that will be expunged with further learning. Oh, Todd, Beckner, Hay,
and King (2023) show that non-Māori-speaking New Zealanders, by the time they reach
adulthood, have internalized a large Māori proto-lexicon; they “can readily identify many
more Māori words than they can define, and … the number of words they can reliably define
is quite small.” Feldman, Griffiths, Goldwater, and Morgan (2013) demonstrate through
simulation that the discovery of phonetic categories is assisted by the compilation of a
proto-lexicon, rather than attempting the same discovery using the raw speech data. The
same is shown, for the discovery of classical phonemes, by Martin, Peperkamp, and Dupoux
(2013). For a review of the proto-lexicon literature, see Todd, Youssef, and Vásquez-Aguilar
(2023).

The proto-lexicon is at the core of our hierarchical models; it plays the same mediating
role in affix discovery that it does for Feldman et al. and Martin et al. for phoneme discovery.
For us, the proto-lexicon is obtained by segmenting utterances into words, and affixes are
obtained by processing the proto-lexicon.8

For the hierarchical strategy to be effective, the segmentation of utterances into words
must be conservative, discovering words per se and refraining from splitting off affixes as
if they were words (since the latter task is delegated to a different portion of the model).
For example, as applied to Sammy wants out, an optimal procedure for word discovery
would aspire to output not the “flat” parse given in (5), but rather the output shown in
(8).

(8) Optimal output for the word-discovery component of a hierarchical model

In other words, for this purpose, we should choose from among available models the ones
that least tend to parse out affixes as separate units. For example, if were to choose among the
three parameter values in (6), we here would opt for d = 1.44.

The second step of the hierarchical strategy is to use the candidate words from these seg-
mentations to compile a proto-lexicon. A miniature proto-lexicon is given in (9). To illustrate
the fact that words of the proto-lexicon occasionally have meanings, we include an informally
stated meaning in the entry for Sammy. The words are listed by type, hence, there is only one
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entry for [wɔnts]. Observe also that, to the extent that the word-discovery model is able to
avoid the error [wɔnt s], the proto-lexicon will include inflected forms.

(9) A partial proto-lexicon based on (8)

In the third and final stage of a hierarchical model, the entries of the proto-lexicon are
processed to discover the affixes; for example, [wɔnts] is discovered to be [wɔnt-s]. Once this
is done, it is possible to combine the results of word discovery and affix discovery to provide
something closer to the full structure of utterances. This is shown in (10), which assumes a
fully successful parse.

(10) Sample result from the hierarchical strategy

What processes might work best at finding affixes within words? One possibility is to pro-
ceed recursively, reapplying the same model that discovered words to discover affixes. How-
ever, our own preliminary checks indicated that this strategy tends to perform poorly, and
for this reason, we opt here for employing a distinct model (Section 8) to find affixes within
words.

In evaluating the flat and hierarchical strategies, we employ standard metrics such as preci-
sion, recall, and F-score.9 However, these metrics must be adapted to the goals of a particular
model type. For flat models, we would want to determine the extent to which the bound-
aries posited in the model match with any linguistic boundary, as in (5) above. For a model
using the hierarchical strategy, we are more stringent, counting its guess as correct only if it
matches word boundaries to word boundaries in the real language, and morpheme boundaries
to morpheme boundaries, as in (10b).

5.2. Roadmap

At this point, we have outlined our scheme to the point that we can intelligibly lay out the
organization of the remainder of this article. Section 5.3 gives a description of the flat mod-
els we have employed. After the training data have been presented in Section 6, Section 7
provides an initial evaluation of the flat models. Section 8 in turn describes and evaluates
hierarchical models. Section 9 tests our models against additional experimental data. In Sec-
tion 10, we summarize all of the evidence, concluding that the hierarchical approach is far
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C. M. Breiss et al. / Cognitive Science 49 (2025) 11 of 41

more promising. In Section 11, we offer additional predictions that the hierarchical approach
makes. Section 12 addresses issues for future research.

5.3. Some candidate flat models

Recall (Section 5.1) that we are readapting available models of word detection to the pur-
pose of detecting affixes. We also want to use these models to serve as the first (word-finding)
stage of a hierarchical model. To find appropriate choices, we examined as many models as
we could that included downloadable software.10 We were particularly aided in this task by
the WordSeg software created by Bernard et al. (2020).

For purposes of discovering words, the models given in (11) performed the best, as deter-
mined by F-score.11

(11) Five best models for word-discovery

All models are described in the references cited, except for the Adaptor Grammars, for which
see Johnson, Griffiths, and Goldwater (2006) and below.

For purposes of discovering affixes, the models given in (12) performed the best. Here, we
calculated F-score on the basis of the 12 most frequent affixes in the corpus. Note that three
of the models are also among the best for word discovery, and so appear on both lists.

(12) Five best models for affix discovery

The chosen models fall into three families, described below.
The model of Johnson et al. (2015), henceforth “JPSD MaxEnt” employs Maximum

Entropy Optimality Theory (Goldwater & Johnson, 2003), with features referring to various
phonological properties of words. As a rough approximation, it seeks the segmentation for the
corpus that has the maximum likelihood. As noted earlier, the model includes a word length
penalty d, which penalizes segmentations that create long words (else it would return the
null segmentation).12 A higher value for d creates segmentations that are more fragmentary,

 15516709, 2025, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/cogs.70047 by U

niversity O
f C

alifornia, L
os A

ngeles, W
iley O

nline L
ibrary on [13/03/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



12 of 41 C. M. Breiss et al. / Cognitive Science 49 (2025)

as was shown above in (6). The value of d that yields the best F-score for word-finding in
the Pearl-Brent corpus is d = 1.55; the value that yields the best F-score for affix-finding is
d = 1.64.

The PUDDLE model (Monaghan & Christiansen, 2010) depends on phonotactics, the prin-
ciples of legal segment sequencing. The model compiles the segment sequences present at
utterance edges, and uses this information as a guide to the (presumed) phonotactics of word
edges, which in turn are employed as the basis for placing word breaks. This model stands
out because in our experience it never makes the error of segmenting an affix separately; thus,
it would be terrible for use as a flat model, but such restraint gives it potential for use as the
word-finding component of a hierarchical model.

The remaining four models are Adaptor Grammars, as originally proposed by Johnson
et al. (2006). Adaptor Grammars permit the analyst to prespecify a hierarchy of linguistic
levels using a context-free grammar. This grammar is then augmented with probabilities
attached to each production rule; at the same time, the system employs a Pitman-Yor process
to accumulate a set of memorized entities at various levels, which typically embody the more
frequent linguistic units.

What varies in the Adaptor Grammars we deploy is the hierarchy of prespecified levels.
The top level of structure is always Utterance and the bottom level is always the sequence
of phonemes. One of the intermediate levels is taken to be the Target level, which may be
assessed for finding morphemes in the flat strategy or for finding words in the hierarchical
strategy. We experimented with adding intermediate levels both above and below the Tar-
get level. These additional levels tend not to be linguistically meaningful (see Section 12.3),
but they are included in the hope of facilitating the discovery of Target-level units. In our
nomenclature for Adaptor Grammars, we specify the entire hierarchy, using “U” for Utter-
ance, “T” for the Target level, “Phon” for the level of phonemes, and “X” for additional
intermediate levels. The three models we cover here are U-T-Phon, U-X-T-X-Phon, and
U-X-T-X-X-Phon.

We also tried a different Adaptor Grammar, AG Phonotactic, that was more specifically
phonological in content, following Johnson (2008) and, more distantly, Coleman and Pierre-
humbert (1997). It specifies a framework for phonotactic knowledge; namely that Utterances
are made up of one or more Words; Words are made of one of more Syllables; and Syllables
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C. M. Breiss et al. / Cognitive Science 49 (2025) 13 of 41

are represented with a widely adopted internal structure (see, e.g., Zsiga, 2013:336), with
Onsets, Rhymes, Nuclei, and Codas.

(13) Syllable structure used in the AG Phonotactic model

The system is told which segments are consonants and vowels, that all and only vowels occur
in Nuclei, and that consonants must occur outside Nuclei. Segments in word-initial and word-
final positions are given distinct treatment.

In Section 7, we turn to the task of empirically evaluating these five flat models.

5.4. Hierarchical models

The word-discovery capacity of the models just discussed forms one component of our
hierarchical strategy, which also needs a basis for discovering affixes within words. Our dis-
cussion of hierarchical models is resumed in Section 8.

6. Modeling the course of acquisition

To model the course of suffix learning across time, we presented our models with a series
of data samples of ever-increasing size, each one a subset of the full Pearl-Brent corpus, and
scrutinized the results obtained by each model for each sample size. Our assumption is that
the developmental bottleneck is not the need to carry out the learning calculations on known
words (a task that we suspect can be accomplished swiftly), but rather the slowness with
which the relevant data can be accumulated from ambient speech. We chose a set of data
samples that varied in size a great deal: the smallest samples were only 1/512th of the full
corpus (55 utterances), and we moved upward by powers of two: 1/256, 1/128, and so on
up to 1/4, 1/2 and the full corpus (28,391 utterances). Each sample is meant as the basis for
learning by the infant at a given point in time. Note that we cannot expect to equate a given
sample size with a particular age of the infant; yet the models still make testable predictions,
for they indicate the relative timing of acquisition of the various suffixes, for which we have
data (Section 3).

Unsurprisingly, for the smaller sample sizes, there is a great deal of variation from sample
to sample, so for each of these, we made 32 different subcorpora and averaged the modeling
results. At the 1/16 sample size and larger, we simply used as many nonoverlapping slices as
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14 of 41 C. M. Breiss et al. / Cognitive Science 49 (2025)

could be made (16, 8, etc.). We ran our models and calculated our evaluation metrics (e.g.,
F-score) for each sample size, then averaged the results, thus tracking each model’s behavior
across simulated time.

7. Evaluating flat models

We fed each of the five models from table (12), with the series of datasets just described. A
model was deemed successful, in general terms, if it learned the affixes in the same order that
infants do. Recall that under the flat strategy, a model is required to learn a suffix as if it were
a word. For instance, in the sentence from (5b), Sammy wants out, a parse of the form [sæm
i wɔnt s aʊt] contributes positively to the evaluation of a model’s performance (F-score) for
each of the affixes [-i] and [-s].

Because of software limitations, our assessments are of the models’ ability to assign affixed
representations to the real words in the corpus. We use this as a proxy for what the models
would do when confronted by a novel stem like [bæbz], as in the Kim−Sundara experiments.

7.1. JPSD1.64 as a flat model

We begin with the JPSD1.64 model, which in our preliminary survey yielded the highest full-
corpus F-score for affixes. In Figure (14), the vertical axis represents the F-scores obtained for
each of the three suffixes [-z/-s], [-ɪŋ], and [-d/t]. The horizontal axis gives virtual time; that is,
expanding corpus size. The x-axis labels denote corpus size, each one a 1/n-sized portion of
the full corpus. The plotted values represent a mean over from 1 to 32 subcorpora, as described
above; error bars (in all figures) represent one standard error, pooled across allomorphs in the
cases of [-z/-s] or [-d/-t].
(14) Learning of three suffixes by the JPSD1.64 MaxEnt flat model: F-scores

We evaluate these predicted acquisition trajectories against the developmental timeline of
English affix discovery summarized in Section 3: a successful model should discover [-z/-s]
first, then [-ɪŋ], and lastly [-d/-t]. In the present case, the model does indeed learn [-d/-t] last,
but it fails in that it learns [-ɪŋ] before [-z/-s]. Thus, we consider it inadequate as an account
of how English-learning infants learn suffixes.
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C. M. Breiss et al. / Cognitive Science 49 (2025) 15 of 41

We suggest that the error of learning [-ɪŋ] too early is not accidental, but is a direct con-
sequence of the model’s structure: because JPSD1.64 includes a length penalty, it is (all else
being equal) less likely to parse out a shorter string like [z] or [s] than a longer string like [ɪŋ];
in particular, shortening a candidate word by two phonemes reduces the word length penalty
by more than shortening it by one phoneme.

7.2. Other flat models

The failure of JPSD1.64 to learn the suffixes in the correct order is shared by the other four
flat models we chose for scrutiny. Figure (15) gives time series plots analogous to Figure (14).

(15) Learning of three suffixes by four flat models: F-score values

Of the four models shown, AG U-X-T-X-X-Phon does the least harm in favoring [-ɪŋ] too
much; perhaps this arises because its target level is further from the bottom of the a priori
hierarchy than its sister Adaptor Grammar models. But even this model falls short, failing to
favor [-z/-s] at any point.

In sum, among these five flat models, as well as others we have inspected but do not report
here, we have found none that can account for the observed developmental timeline. A pattern
widely seen among the failed models is that they learn [-ɪŋ] first, rather than the observed
[-z/-s]. We think this finding makes sense, since any model that is specifically designed to
discover words is likely to incorporate a bias against words that are very short, very short
words being unusual. So, [-ɪŋ] is benefiting here, wrongly, from its greater length.

7.3. The affixes that flat approaches discover

An adequate model should not just learn the affixes that really exist, but it should also
refrain from learning affixes that, linguistically speaking, are random nonsense. From a
methodological point of view, any model that “discovered” the correct suffixes by positing
a host of nonsensical pseudo-affixes would hardly be convincing.

As a way of testing the suffixes that our flat models discovered, we developed a peripheral-
position test: intuitively, when a flat model isolates a very short sequence at the end of an
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16 of 41 C. M. Breiss et al. / Cognitive Science 49 (2025)

utterance, it is reasonable to treat this as the discovery of a suffix. For example, if a model
divides Uh-oh, that’s Mommy’s into [ʌʔo ðæts mɑmi z], it is reasonable to infer that it is
treating [z] as a suffix. The actual test includes a number of refinements; see Supplementary
Materials B.

The test revealed that our flat models were learning quite a few putative “affixes” that,
from a linguistic point of view, are bizarre. All of them were extracted from highly frequent
words in the corpus, for instance, [pi-], extracted largely from the frequent word peekaboo—
parsed by the models as [pi[kəbu]]. Here are similar cases (in all of them the frequent word
is a family member): [-ri], obtained from Henry [[hɛn]ri]; [-di] from Mandy [[mæn]di];
[-ən] from Dillon [[dɪl]ən]; [æl-] from Alexander [æl[əgzændr̩]; and (from a different model)
[-dr̩] from Alexander [[æləgzæn]dr̩]. No flat model was exempt from this kind of error, which
moreover was not made by the hierarchical models discussed below.

Why do flat models discover these quirky pseudo-affixes? We cannot offer a full expla-
nation (which doubtless would vary from model to model), but a likely cause is that these
models, rather than forming a proto-lexicon, work directly with utterances—and, therefore,
are based on token counts rather than type counts. We presume that this is the only mechanism
that could give words like peekaboo or Henry such outsized influence.

7.4. Summary of results on flat models

The critique of flat models that emerges from our testing is twofold. First, these models
consistently fail to match the acquisition order found in English-learning infants, in particular,
learning bisegmental [-ɪŋ] before they learn [-z/-s], probably because they favor the discovery
of relatively longer morphemes. Second, they tend to learn peripheral substrings of single fre-
quent words (like peekaboo) as outlandish affixes, probably because they are based on token
frequency. Together, these findings suggest a tentative conclusion: that flat models, by virtue
of their very structure, are not a good approach for explaining how infants discover suffixes.

8. Hierarchical models

We turn next to the second of the two general alternatives we are exploring, hierarchi-
cal models. To review: we assume that in such a model, the sequence of utterances is ini-
tially parsed into (something approximating) its component words. These words are stored as
entries in a proto-lexicon, where they are represented as types; that is, even a word of great
frequency will still have just one entry in the proto-lexicon. The proto-lexicon serves as the
training set for an affix-discovery module.

As noted earlier, to obtain a good proto-lexicon, it is best to pick a slightly different set
of models to serve as the word-discovery front end. In Section 6, where we evaluated flat
models, we made use of word-discovery models that performed well at discovering affixes.
Here, we want to use a model that is specifically good at discovering only words (its original
intended purpose). A list of good candidate models was given above under (11).
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8.1. Models for learning affixes within words

The other task in a hierarchical model is to take the entries of the proto-lexicon and use
them to learn words. For the task of finding affixes within words, we might in principle have
sought out a model from the large literature (Hammarström & Borin, 2011). In this case,
however, we have opted for a different strategy, namely, using only very simple models. We
feel that any loss of accuracy is likely to be compensated by a clearer understanding of what
data patterns matter and how the model deals with them.

The model we ultimately opt for is based on the work of Baroni (2000, 2003), where the
concepts we call Terminus Frequency and Parse Reliability below are explicitly defended
and implemented under a Minimum Description Length approach. Here, we will start by
exploring some simple options, each of which is unsatisfactory on its own but offers some
help in finding a more adequate model.

The simplest possible model we can imagine is one that says that affixes can be found
because they are frequent terminal strings: if a particular phoneme string y occurs frequently
in word-initial position, it is likely to be a prefix ([y [x]]) and if y frequently occurs word-
finally, it is likely to be a suffix ([[x] y]). A more precise characterization of the intended
criterion is given in (16):

(16) Terminus Frequency

We assume here that list C consists simply of the set of distinct word types in a given
corpus. For the alternative of having C consist of tokens, see Sections 7.3 and 8.6.

Of course, not all instances of a candidate affix actually are affixes; some of them are “false
friends.” [-z] is indeed an affix in sees [si-z], but in sneeze [sniz] it is not ([sni-z], implying
*snee). Despite this, we will show that high Terminus Frequency does have considerable
heuristic value in detecting affixes. In the full Pearl-Brent corpus, fully 20.2% of the word
types end in [z] or [s]; 17.6% in [d] or [t]; and 8.7% in [ɪŋ].13

However, taken alone, Terminus Frequency is unlikely to provide the basis for a successful
acquisition model. A simple argument to this effect is based on the fact that the terminal string
[-ŋ], plainly not a suffix, has a higher Terminus Frequency than the real suffix [-ɪŋ], since it
is present in all of the words ending in [-ɪŋ] as well as many other words such as song [sɔŋ].
In light of this, it is perhaps unsurprising that the Terminus Frequency values for the three
affixes on which we focus, calculated across simulated time, do not match acquisition order:
[-d/-t], [-z/-s], [-ɪŋ], rather than correct [-z/-s], [-ɪŋ], [-d/-t]. For calculations and time series,
see Supplementary Materials C.
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Consider next a different metric. At least for English, if [[x] y] is a suffixed form, then for
any data corpus C, C is likely also to include x, the base from which [[x] y] is derived. For
example, the Pearl-Brent corpus includes the suffixed forms falling, feeding, and barking, and
we are not surprised to find that it also includes fall, feed, and bark. This suggests that a metric
that tracks such correspondences might be useful for affix discovery.

To operationalize this idea, we will make the same assessment across all word types that
end in y: the more often x is in corpus C whenever xy is in C, the more likely y is to be a suffix
(and analogously for prefixes). This assessment can be expressed as a ratio, the total cases of
xy where x also occurs, divided by the total cases of xy. We call this ratio Parse Reliability,
giving a more careful definition in (17), which presupposes a list of word types:

(17) Parse Reliability

Here are some examples of how Parse Reliability works. An English word ending in
[-ɪŋ] is quite likely to be suffixed, reflecting the fact that suffixed words like jumping greatly
outnumber monomorphemic words like lemming. Thus, even assessed in a small corpus like
the Pearl-Brent, [-ɪŋ] has a rather high Parse Reliability value, 0.684. In contrast, if y is a ran-
domly chosen nonsuffix, we will find x within xy only if xy is a “false friend” in the sense just
given. For example, the Parse Reliability of the nonsuffix [-k] is 0.136; it is above zero only
because English has a modest number of false-friend pairs like thing [θ ɪŋ]—think [θ ɪŋk].

However, as before, it turns out that Parse Reliability alone cannot serve as a good basis
for affix learning; it, too, learns our three affixes in the wrong order, in this case [-ɪŋ],
[-z/-s], [-d/-t], rather than correct [-z/-s], [-ɪŋ], [-d/-t]; details are given in Supplementary
Materials D.

Although working alone, Terminus Frequency and Parse Reliability fail to provide adequate
models, we show here that they can be combined to provide an effective model. We first
demonstrate this in qualitative terms, and then provide the full model. In Figure (18), we
consider not just the primary affixes of interest here but a large set of affix candidates: we
inspect every one of the 700 or so word-peripheral phoneme sequences of length 1 or 2 that
occur in the words of the Pearl-Brent corpus. Considering just the full corpus (the earlier
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subcorpora are considered shortly), we plot Terminus Frequency and Parse Reliability values
together in the scattergram.14

(18) Joint distribution of Terminus Frequency and Parse Reliability values (700 terminal
phoneme sequences)

We see that the three focus suffixes all occur in the upper right region of the figure,
accompanied by two other important suffixes, adjectival/diminutive [-i] (-y, -ie) and agen-
tive/comparative [-r̩] (-er); the latter are discussed in Section 8.6. The remaining real affixes
of English are much rarer, and we expect that research would show that they are not learned
early. We also note that the troublesome nonsuffix [-ŋ], which has very high Terminus Fre-
quency, also has very low Parse Reliability. The general point that emerges from Figure (18)
is that the nonaffixes occupy an L-shaped region. Hence, neither Parse Reliability alone nor
Terminus Frequency alone can single out the sequences of interest as real affixes, but in an
appropriate combination, they should do fairly well.

Terminus Frequency and Parse Reliability not only single out the right affixes in the final
learning state, but we also find that they provide the key to a model that predicts acquisition
order correctly. In particular, when we plot the trajectories taken by our target affixes over
simulated time, we find that they gradually emerge from the L-shaped default region into the
privileged upper-right corner (see Supplementary Materials E and graph (24) below). Under
a suitable choice of model parameters, we find that the target suffixes enter the upper right
region in an order that matches the experimental findings. We turn to formulating a model
that accomplishes this task.

8.2. An affix-finding model combining Terminus Frequency and Parse Reliability

Our model is reminiscent of MaxEnt Optimality Theory in linguistics (Goldwater & John-
son, 2003): we enumerate a set of candidate morphological parses and employ the mathemat-
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ics of multinomial logistic regression to assign a probability to each candidate, based on a set
of features.

For us, the set of candidate parses for any given word has up to 11 members. One candidate
treats the word as unaffixed, and the remaining candidates posit a single prefix or suffix, whose
length ranges from one to five segments. To give a simplified example, for the past tense form
shared, phonetically [ʃerd], the model would allot probability to the following set of nine
candidates.

(19) The nine candidates for “shared” [ʃerd]

A longer word like spilled [spɪld] would have the full 11 candidates.
The output of the model is a probability distribution over each candidate set; a typical

output of our system for (19) is given in (20) (for the weights employed, see (22) below).

(20) Characteristic probabilities assigned to the 9 candidates in (19)

It can be seen that in this case virtually all the probability is assigned to the two intuitively
reasonable candidates; that is, unparsed and suffixed with [-d].

The model employs multinomial logistic regression (see, e.g., Jurafsky & Martin, in prepa-
ration, ch. 5). There are three features, of which two are the model’s representations of Ter-
minus Frequency and Parse Reliability. In addition, it is helpful also to include a “Prefer
Monomorphemic” feature that serves as an intercept term, reflecting the overall eagerness or
reluctance of the model to detect affixes in the data.

For any given candidate, each feature bears a value, calculated in the ways described below.
The features also bear real-number weights (w) that express the degree to which the feature
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values raise or lower the probability of a candidate. In our notation, features with positive
weights lower the probability of candidates that match their description, and features with
negative weights raise the probability.

The three features of our model are essentially as given above, defined more explicitly. We
will use small capitals to distinguish features from the metrics they are based on.

TERMINUS FREQUENCY. The value of TERMINUS FREQUENCY for any affixed candidate is
the natural log of its Terminus Frequency (i.e., type frequency), as defined in (16). It is nat-
ural to employ log frequency, since log frequencies often do better for purposes of modeling
experimental data involving words, for instance, in reading time (White, Drieghe, Liversedge,
& Staub, 2018), word recognition (Magnuson, Mirman, & Harris, 2012), naming (Howes,
1979), and morphological productivity (Hay & Baayen, 2003).

Here is a representative calculation. Of the 3225 word types in the full Pearl-Brent Corpus,
228, or 7.1%, end in [d], so the raw Terminus Frequency metric for the [-d] suffixed candidate
is 0.071. The TERMINUS FREQUENCY value used in our model for any [-d]-suffixed candidate
(i.e., of the form [[x]d]) is the log of 0.071, −2.65.

We define the TERMINUS FREQUENCY value for unaffixed candidates as 1. This is an arbi-
trary choice, since whatever value we choose will be counterbalanced by the weight of PREFER

MONOMORPHEMIC.

PARSE RELIABILITY. To assign values to PARSE RELIABILITY, we use the metric defined
in (17). Like TERMINUS FREQUENCY, PARSE RELIABILITY acts as a reward, and to be effective
must bear a negative weight. As with TERMINUS FREQUENCY, we assign the arbitrary value 1
to unaffixed candidates.

PREFER MONOMORPHEMIC. This feature bears the value 1 for all affixed candidates and
0 for the monomorphemic candidate. In fitted models, it normally bears a negative weight,
boosting the probability of the affixed candidates.

In what follows, we will frequently refer to a simple particular model based on these three
features, given in (21).

(21) Features and weights for a simple hierarchical model

These weights are ad hoc; they were chosen to fit the modeled data patterns of (3) when we
assume all-correct real words as the output of the word discovery stage. Our intent at present
is simply to provide an “existence proof”; that is, with appropriate weights, it is possible
to use Terminus Frequency and Parse Reliability to derive the observed outcomes with a
hierarchical model. In this respect, we claim that the hierarchical approach differs from the
flat approach discussed above, in which the prospects for there being any feasible model
appear to be bleak. For exploration of weights different from (21), and of more realistic word
discovery procedures, see Supplementary Materials F and Section 8.5.
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Although our findings are primarily an existence proof, we will see in Section 9.3 that
model (21) does extend beyond the data to which it was fitted; it turns out to predict further
experimental data that had not been gathered when we proposed the model.

We next cover how model (21) is employed to calculate probabilities for the various mor-
pheme parses. The logistic regression calculations applied to the candidates in (20) are given
in (22). Candidates 4–9 are assigned probabilities similar to [[ʃe]rd] and are omitted.

(22) Generating the probabilities of (20) (first three candidates) using model (21)

PREFER

MONOMORPHEMIC

TERMINUS

FREQUENCY

PARSE

RELIABILITY

linear
predictor

p

w = −28 w = −5 w = −13
1. [[ʃerd]] 0 1 1 −18 .274
2. [[ʃer]d] 1 −2.65 0.32 −18.97 .726
3. [[ʃe]rd] 1 −5.43 0.43 −6.37 ∼ 0

8.3. Addressing the data with the hierarchical model

As before, we fed the training data to our hierarchical model in batches, employing the
same sequence of subcorpora (Section 6). As an initial demonstration of feasibility, we first
use correct words as the training data instead of the output of the model’s word discovery
stage, turning to the latter, more realistic task in Section 8.5.

To see whether the model can mimic the behavior of infants studied experimentally, we
calculate the probability it assigns to the suffixed candidate for each of the nonce stems used
in the experiments, for all three suffixes (e.g., babs, babbed, and babbing). We suggest that it
is reasonable for the model, and the infant, to conclude that babs is suffixed if it is the [[bæb]z]
parse that receives the greatest probability. In the normal case, this arises when the probability
of [[bæb]z] exceeds 50%, since usually just one other candidate, namely, unsuffixed [bæbz],
is viable. In an adequate model, [-z/-s] should cross the 50% threshold first, followed by [-ɪŋ],
followed by [-d/-t].

This is in fact the case for model (21); in (23), we give the model probabilities for the
suffixed candidate for all three suffixes and all 10 time stages. The key point is that the three
lines cross the 50% threshold at clearly distinct stages, in the correct order.
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(23) Probability of model (21) finding correct parse over simulated time (trained on real
words)

We can understand how the model succeeds more closely by examining not the output
probabilities themselves, but rather the individual contributions to the linear predictor made
by the features TERMINUS FREQUENCY and PARSE RELIABILITY. These are plotted in two-
dimensional space, scaled by the feature weights, in (24). Each series of datapoints shows
how an affix moves through this space, crossing the “50% line” at which the probability of
the suffixed candidate comes to exceed that of the monomorphemic candidate.

(24) Weighted contributions over time of TERMINUS FREQUENCY and PARSE RELIABILITY to
the linear predictor
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Over simulated time, the three paths cross the line in the correct order [-z/-s], [-ɪŋ], [-d/-t].
In sum, the formal model (21) helps to validate our original suggestion that the properties of
Terminus Frequency and Parse Reliability can be used to predict acquisition order.

8.4. Further issues

Having demonstrated the potential of the model to match the experimental data, we use the
Supplementary Materials to shore up our proposal in various ways. Section G demonstrates
that the Terminus Frequency and Parse Reliability values seen in the Pearl-Brent corpus are
not accidental to that corpus, but are stable across a range of English corpora. Section H
offers explanations for why Terminus Frequency and Parse Reliability change over time in
the observed way. Section I shows that our model, in its final state, gives parses that approx-
imately match those of a gold-standard parse of the Pearl-Brent corpus. Section J explores
whether adding further predictors to the model would improve its accuracy.

8.5. A complete hierarchical model

We next present a more realistic simulation, in which the affix-finding component is
fed the results of an actual word-finding model, rather than an artificially correct diet of
known English words. As the word-finding model, we chose AG Phonotactic, described in
Section 5.3. Among the models examined there, this model ranked second at the task of
discovering words, and it was the most effective when serving as the word-finding component
of a hierarchical model.

We first give the trajectories of the values for Terminus Frequency and Parse Reliability
when the proto-lexicons on which they are calculated are not real English, as above, but are
obtained from the AG Phonotactic model. In the Supplementary Materials (C, D), we have
given the trajectories for our hierarchical model as calculated from real-word data, and they
are unproblematic, providing the basis for successful learning. In contrast, the trajectories
obtained using the AG Phonotactic model are a source of trouble (Figure (25)).

(25) How Terminus Frequency and Parse Reliability change over simulated time, when fed
the output of AG Phonotactic
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In particular, we see that [-ɪŋ] actually declines somewhat in Terminus Frequency, rather
than rising to catch up with the others as it does for real words. The probable cause is that AG
Phonotactic, once it has seen enough data, has a strong tendency to parse [-ɪŋ] as a separate
word (about half of all [ɪŋ] sequences, at the final stage), thus reducing its frequency as a
suffix and eliminating cases that could have boosted Terminus Frequency. We had chosen
AG Phonotactic because, among our word-finding models, it is the most conservative about
parsing [ɪŋ] as a word, but nevertheless, learning was impacted.

In spite of the misparsing problem, it emerges that this hierarchical model can be made to
work, after a fashion: we dispense altogether with TERMINUS FREQUENCY (no longer useful,
in light of the distortion induced by the word-discovery module) and employ only PREFER

MONOMORPHEMIC (weight −9) and PARSE RELIABILITY (weight −13 as before). This turns
out to derive the correct acquisition order (Figure (26)).

(26) Probability of correct parse over simulated time—affix-discovery module fed with output
of AG Phonotactic word-discovery module

It is somewhat odd that the model should work at all, since we earlier (Section 8.1) saw that
in real English, Parse Reliability alone does not suffice for an adequate model.

The points that we draw from this result are as follows. First, unlike for the flat strategy,
it is possible to construct a hierarchical model that captures the observed acquisition order.
However, the anomalies of our model point to the need for a better word-finding component,
one that would refrain from parsing [-ɪŋ] so often as a word. In Section 12.3, we explore
what might be needed to construct such a model. With a better word-finding component, the
hierarchical approach is likely to resemble the earlier modeling with real words (Section 8.3),
which worked straightforwardly.

8.6. Further affixes learned by the hierarchical model

In Section 7.3, we critiqued flat models on the basis of their poor performance in positing
affixes where none exist, such as [pi-] in peekaboo. Here, we address the same question for
our proposed hierarchical model, trained on the real words of the Pearl-Brent corpus. Table
(27) lists the 10 highest-scoring affix candidates (terminal sequences, length 1 or 2) output by
the hierarchical model in descending order; in this case, we separate out the allomorphs [-z]
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and [-s] as well as [-d] and [-t] (see Section 9.2). The scores represent the probability that the
model would assign to the affixed parse in a novel form that lacks any other plausible affix.

(27) Top 10 affixes learned by the hierarchical model (as trained on idealized data)
Rank Affix Type Model score Status
1. [-z] suffix 0.9997 real, studied above
2. [-ɪŋ] suffix 0.999 real, studied above
3. [-i] suffix 0.966 real: diminutives, denominal adjectives
4. [-t] suffix 0.927 real, studied above
5. [-s] suffix 0.906 real, studied above
6. [s-] prefix 0.757 pseudo-affix
7. [-d] suffix 0.726 real, studied above
8. [b-] prefix 0.492 pseudo-affix
9. [-r̩] suffix 0.476 real: agentive nouns, comparatives
10. [k-] prefix 0.297 pseudo-affix

In sum, the list comprises all five of the focus suffix allomorphs, two additional real suf-
fixes, and three pseudo-affixes.

The real suffix [-i], which forms diminutives (doggy, horsie) and denominal adjectives
(messy, stinky), appears to be a good candidate for early acquisition. Indeed, according to the
model, it should be acquired ahead of [-s], [-t], and [-d]. In Section 9.3, we will assess our
model against recent experimental findings about the acquisition of this suffix.

The suffix [-r̩] forms agentive nouns (drummer, dancer) and comparative adjectives (faster,
darker). [-r̩] has a relatively low score in (27), leading us to expect later acquisition. Never-
theless, it is in the top 10, suggesting it might be informative to study it in future experimental
work.

Are there any other real affixes which we should be considering? To be sure, English has
a great number of affixes, documented in scholarly work such as Marchand (1969). Almost
all of these, however, are rare or have learned status; they are almost certainly acquired post-
infancy. Thus, we doubt there are any well-attested affixes that our model is failing to discover.

The three pseudo-affixes to which the model assigns the highest scores are [s-] (0.757,
rank 6th), [b-] (0.492, 8th), and [k-] (0.297, 10th). These are posited because of an accident
of the English lexicon, which includes for each of these pseudo-prefixes a large number of
false friends; defined above as morphologically unrelated pairs that coincidentally display the
putative affixation pattern. For example, the Pearl-Brent corpus contains 395 words beginning
with [s], of which about 140, or 35%, are the “prefixed” member of a false-friend pair; we
give a few examples in (28).

(28) Some “false friends” for the pseudo-prefix [s-]
False friend “Base” Wrong analysis
stuff tough [s[tʌf]]
send end [s[ɛnd]]
snap nap [s[næp]]
sleeve leave [s[liv]]
scare care [s[ker]]
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Thus, the occurrence of at least a few errors of this kind is perhaps an inevitable con-
sequence of distributional learning; after all, absent any semantic information, there is no
compelling reason to reject the hypothesis that snap is prefixed. If [s-] is indeed learned as
a prefix at some stage of distributional learning, we conjecture that this garden path is later
retraced once the meanings of, for example, snap and nap are known. What is encouraging is
that pseudo-affixes are not posited in great numbers; so the cost of trimming them back later
is presumably modest compared with the benefit of grasping [-z/s], [-d/t], and [-ɪŋ] early on.
Another encouraging fact is that for the nonaffix studied by Kim and Sundara (2021), namely,
[-ʃ] in [bæbʃ], our hierarchical model assigns a very low probability score, 0.035.

For consistency, we also submitted our hierarchical model to the same peripheral-position
test that we used earlier (Section 7.3) to evaluate flat models. As before, we used a 50%
probability threshold to convert the gradient results of the hierarchical model into a binary
decision. This renders the hierarchical model similar to the flat models, which likewise make
only up-or-down decisions. The results we obtained are given in (29).

(29) Affixes most frequently discovered by the hierarchical model—peripheral-position test

Rank Affix Count Status
1 [-t] 3292 real
2 [-i] 2970 real
3 [-s] 1373 real
4 [-z] 1273 real
5 [s-] 1150 pseudo-affix
6 [-d] 979 real
7 [-ɪŋ] 776 real

In fact, only seven affixes passed the test. These are precisely the affixes of (27) that
exceeded the 50% threshold for inclusion; [b-], [-r̩], and [k-], which are missing, are the
affixes that fell short of 50%. No instances were found of the pseudo-affix [-ʃ]

It is also worth reexamining the particular cases in which the flat models (Section 7.3)
assigned a high probability to a suspect parse on the basis of a single high-frequency word.
Our hierarchical model consistently assigns very low probability to such parses; for instance,
3.1 × 10−7 for [[hɛn]ri] in Henry, 1.6 × 10−6 for [pi[kəbu]] in peekaboo, and 1.8 × 10−6 for
[[mæn]di] in Mandy.

In sum, we find that comparing the lists of affixes discovered by flat versus hierarchical
models is informative. Both classes of model are generally able to discover our focus affixes
(though not in the right order, in the case of flat models). But they differ greatly in the pseudo-
affixes they learn. Our hierarchical model generally posits a pseudo-affix only when forced
to do so by a substantial set of false friends. In contrast, flat models tend to posit pseudo-
affixes in a different way: they are greatly influenced by individual words that have high
token frequency.

The “token problem” faced by flat models can be placed in a broader perspective, obtained
from earlier research that likewise seeks to model experimental results, in this case obtained
from adults. Numerous studies suggest that for experimentally gathered judgments that are
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based on the lexicon, the use of type frequencies in modeling usually yields more accurate
results; for phonotactics, see Albright (2009), Bailey and Hahn (2001), Coleman and Pier-
rehumbert (1997), Hayes and Wilson (2008), and Richtsmeier (2011); and for morphology
and morphophonemics, see, for example, Albright (2002), Albright and Hayes (2003), Bybee
(1995, 2001), Hayes and Londe (2006), Pierrehumbert (2001), and Goldwater (2007). In light
of this evidence, it would make sense that infants should likewise use type frequency when
learning affixes.

Our own hierarchical model fits the pattern established in these earlier studies, in that it
works better when trained with types, not tokens. To show this, we retrained model (21),
letting each training word be represented by its token frequency in the Pearl-Brent corpus,
rather than just once, as in our main model. Under the token-frequency training regime, the
model’s ability to discover affixes was substantially diminished: the average probability of
the correct parse was 0.344 versus 0.636 when trained with types.

9. Testing the hierarchical model on further affixes and allomorphs

An important purpose of an implemented model is to suggest novel experiments. This
indeed has occurred in our research project: our hierarchical model was set up (and its weights
fitted) solely with the goal of matching the three-way acquisition order [-z/-s] > [-ɪŋ] > [-d/-
t]. But with the model up and running, we found that it generated new predictions that could
be tested in the laboratory.

9.1. Early learning of [-i]

One prediction was that the suffix [-i] would be acquired relatively early. Sundara and
Johnson (2024) undertook to investigate the acquisition of this suffix experimentally, using
the same methods as before. They found that infants are able to recognize [-i] as a suffix by the
age of 8 months. While this one experiment does not suffice to pin down the acquisition time
precisely, the tested age of 8 months falls comfortably within the predictions of our model;
see table (33) below.

9.2. Different acquisition trajectories for allomorphs

When we originally fitted them to data, our models averaged together the outcomes for dis-
tinct allomorphs: [-z] and [-s] are phonetically distinct but were treated as a single category,
and likewise for [-d] and [-t]. We made this choice because these allomorphs were collapsed
together in the experiments in Kim and Sundara (2021). However, it is possible that the dif-
ferent allomorphs are detected by infants at different times. (Since the infants probably do not
know the meaning of the suffixes at this stage, the learning of one allomorph arguably cannot
assist the learning of the others; from the infant’s point of view, they are separate entities.) In
fact, if we do not average the results, our models turn out to make quite different predictions
about the two allomorphs, as seen in the graphs in (30).
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(30) Model results for [-z/-s] and [-d/-t], separating the allomorphs

It can be seen that for most of the acquisition trajectory, [-z] is well ahead of its partner [-s],
and the same holds true for [-t], leading [-d].

Thus, our model again generates predictions going beyond the data on which it was orig-
inally trained, an impetus for further empirical study. In unpublished work, Liang (2024),
using methods identical to those used by Kim and Sundara (2021), shows that at 6 months,
infants are able to detect [-z], but not [-s]. This result, too, falls within the range predicted by
our model, as we will now show.

9.3. Putting the results together: All suffixes and allomorphs tested to date

Our model (21) was trained under quite minimal conditions: it had to capture the coarse
acquisition order [-z/-s] > [-ɪŋ] > [-d/-t], and its parameters were set solely with this goal in
mind. The model generated predictions about the relative acquisition order of [-i] and of the
suffix allomorphs [-z], [-s], [-t], and [-d], predictions which led to novel experimental work
on these suffixes. The number of data points increased from 3 to 10. The full data presently
available are summarized in (31).

(31) Full data obtained to date

Age Affix Detected? Source
a. 6 months [-z/-s] yes Kim and Sundara (2021)
b. 6 months [-z] yes Liang (2024)
c. 6 months [-s] no Liang (2024)
d. 6 months [-ɪŋ] no Kim and Sundara (2021)
e. 6 months [-d/-t] no Kim and Sundara (2021)
f. 6 months [-ʃ] no Kim and Sundara (2021)
g. 8 months [-ɪŋ] yes Willits et al. (2014); Kim and Sundara (2021)
h. 8 months [-d/-t] no Sundara and Johnson (2024)
j. 8 months [-i] yes Sundara and Johnson (2024)
i. 10 months [-d/-t] yes Sundara and Johnson (2024)

We can assess how model (21) covers the new data by examining the trajectories it creates;
these are shown in (32).
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(32) Predicted probability over time for correct parse under model (21)—full affix set

As will be recalled, the key values extracted from these curves represent the point in time
at which the probability assigned by the model comes to exceed 50%, so that the affixed
parse becomes the model’s majority preference. These, then, are the key predictions. In (33),
we offer a synoptic view showing the compatibility of the model predictions with the full
data. The words “yes” and “no” correspond to the data points given earlier in table (31).
Each horizontal bold line represents the point at which model (21) crosses the 50% line for a
particular affix, as seen in (32); vertical bars represent 95% confidence intervals. The vertical
axis labels on the right side of the chart give a conjectured affiliation of corpus size with
chronological age of experimental participants; for example, 1/128 is suggested as being
affiliated with 6 months.

(33) Synoptic view: experimental results compared with the predictions of model (21)
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It can be seen the model is consistent with all of the currently available experimental data.
The boldface lines fall in an orderly pattern, separating the cases of “not yet discovered” from
“discovered” for all the affixes in question.

While we have emphasized the chronology of discovery, in the end of course our model
must be evaluated against its ability to model all of the experimental findings together. Our
point is methodological: the existence of an explicit model, based on limited data, led to
appropriate experiments for further testing. So far, the model is compatible with all available
experimental findings.

10. Discussion

10.1. Model architectures (hierarchical vs. flat, type vs. token)

With regard to the hierarchical modeling strategy, our studies have demonstrated feasibility:
at least one model (Section 8.5) is able to capture the experimental observations summarized
in (33). Our studies do not demonstrate inevitability of correct learning, since they depend
on a particular setting of the model weights, but the qualitative patterning of our key metrics
Terminus Frequency and Parse Reliability, shown in (24), demonstrates that our approach is
feasible in principle.

In contrast, the flat strategy did not work well at all, irrespective of which particular model
was employed. We have diagnosed this failure in two ways.

First, the flat models all proved (Section 7) to be overeager in detecting [-ɪŋ], wrongly
learning it ahead of [-z/-s]. We conjectured that this error resulted from the greater resem-
blance of [-ɪŋ] to real words; it is longer in segment count than [-z/-s] and [-d/-t], and for the
AG Phonotactic model, it is also relevant that [-ɪŋ] contains a vowel. In general terms, we
think that looking for affixes using the same criteria employed to look for words is a likely
source of error.

Second, the flat models fail because they learn from tokens, not types. This led to numerous
predicted parses that we think are almost certainly erroneous, namely, the extraction of short
substrings as affixes from single, highly frequent words, as in *[pi[kəbu]] peekaboo (Sec-
tion 7.3); this type of error is avoided by the type-based hierarchical model, which treats all
the tokens of peekaboo as a single data point. Beyond this, the hierarchical model itself does
far better at finding the real suffixes when it is trained on types rather than tokens (Section 8.6).
Under the hierarchical model, type-based learning has a natural origin, since the information
used for affix discovery is not the incoming speech stream (as it must be for flat models),
but the entries in the proto-lexicon. The plausibility of the hierarchical model is increased by
independent evidence for the existence of a proto-lexicon in infants (Section 5.1), as well as
evidence that adult speakers also apprehend lexical generalizations on a type, not token basis
(Section 8.6).

10.2. “Reverse engineering” in acquisition research

Scholars such as Dupoux (2018) and Guest and Martin (2021) have made the case for the
role of computational modeling in cognitive science. In every area, researchers confront the
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problem that knowledge and computation within the human brain are concealed. The “reverse
engineering” approach advocated by these authors is one way to confront the difficulty of
research under such conditions.

In the present context, we judge that modeling work can, at the very least, serve as a basis
for reducing uncertainty: it helps us to rule out approaches that are unlikely to be correct.
For instance, we judge that what real children do in learning morphology is less likely to
correspond to a flat model than to a hierarchical model, because even the best available flat
models yield predicted patterns that are quite distinct from those observed in children. For
the future, it is reasonable to hope that the development of a sequence of ever more-refined
models, carried out in tandem with model-guided experimentation, will lead to a more precise
understanding of what is happening in humans.

11. Predictions for future research

Only a few of the predictions made by our model have been tested; here we cover some
others.

11.1. Suffixes learned as prefixes?

We have seen repeatedly that flat models tend to learn the suffix [-ɪŋ] as if it were a word.
If, contrary to what we have claimed, infants likewise treat [ɪŋ] as a word, we might expect
them to accept [ɪŋ] in a context where suffixes are not permitted—namely, at the beginning
of an utterance. Suppose, then, that we devised an experiment in which infants of appropriate
age are familiarized with passages that contain (for instance) an utterance-initial nonword of
the form [ɪŋsum] ingsoom. We suggest that if, in the test phase, the infants recognize isolated
soom [sum] as a word, this would constitute evidence that they have detected [ɪŋ] using some-
thing akin to a flat model—they cannot be using a hierarchical model of the type we advocate,
for such models distinguish between prefixes and suffixes,15 and the distributional evidence
to support [ɪŋ] as a prefix is very weak.16

On the other hand, if infants do not detect soom in ingsoom, the result is ambiguous, for
there are multiple explanations. One possibility is that, just as we have suggested, affixes are
learned with a hierarchical model, which induces not just the segmental content of [-ɪŋ] but
also the fact that it occurs directly after the stem. However, this result would not rule out all
flat models, because infants might be learning a positional restriction, essentially syntactic in
character, that prevents the “word” [ɪŋ] from occurring sentence-initially (a real-life model of
this kind is the bigram model in Goldwater et al., 2009).

11.2. Further affixes to be investigated

The discussion above (see (27)) indicates that agentive/comparative [-r̩] should be learned
somewhat after the [-d] allomorph of [-d/-t]; this prediction has yet to be tested. No other
affixes are predicted to be learned early. This itself is a model prediction: if (for example)
an experiment showed that adverbial -ly [-li] or negative un- [ʌn-] were learned as early as
[-d/-t], this would constitute counterevidence to the model.17
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It might also be profitable to look at whether any of the pseudo-affixes learned by the
models (notably [s-]; (27)) are learned as errors by infants—while we doubt that this would
be the case, if such mislearning is ever detected, it would constitute very persuasive evidence
for the general hypothesis of distributional learning.

A special case of pseudo-affixes are the ones extracted by flat models from frequent single
words, such as [pi-] from peekaboo. We anticipate that no experimental evidence will ever be
found to support the view that infants extract such affixes from the signal. If such evidence
were found, it would constitute a powerful argument in favor of models that (like our flat
models) depend on token frequency.

Beyond this, our hierarchical model makes general predictions about order of acquisition
that go beyond the specific cases studied here. These predictions are not always what we
might imagine in advance of modeling. Although it seems intuitive that infants should first
learn affixes that correspond to frequent terminal strings, according to our model, this is
not the whole story. An affix like [-ɪŋ], which has relatively low Terminus Frequency but
excellent Parse Reliability, can be learned early. Moreover, we predict that strings like final
[-ŋ], with excellent Terminus Frequency but negligible Parse Reliability, should not be
acquired as suffixes.

11.3. Adult intuitions

People learn new words throughout their lives (Schwartzman et al., 1987; Ramscar, 2022),
and many of these words have morphological structure—or sound like they might. It seems
possible that the metrics of Terminus Frequency and Parse Reliability that we use might be
detected in the behavior of adult speakers queried on the morphological status of novel words.
For instance, [ˈtrɛpɪŋ] might be taken as the present participle of trep, or alternatively, as a
(monomorphemic) surname (Trepping). We can imagine similar probes based on [-z/-s], like
[spɔɪz]; and [-d/t], like [flaʊd].

Our hierarchical model, trained directly on the Pearl-Brent corpus, predicts that [-ɪŋ] forms
should be perceived as bimorphemic more often than [-z/-s] forms, which in turn should be
perceived as bimorphemic more often than [-d/-t] forms (see right edge of curves in (23)).
We are unaware of any existing findings that test this specific prediction, but a substantial
body of work has addressed similar questions in the domain of real words (Baroni, 2003;
Creemers et al., 2023; Hay & Baayen, 2002, 2003). Also, tests of Terminus Frequency and
Parse Reliability might be conducted by examining their performance against data from stud-
ies on artificial-language material, as in Lelonkiewicz, Ktori, and Crepaldi (2020).

12. Issues for further work

12.1. Generalizing Parse Reliability to languages with bound stems

The key element of Parse Reliability as implemented in our hierarchical model is its method
of stem detection: to assess whether x is the morphological stem of [[x] y], our model searches
the proto-lexicon for x as an independent word. This procedure is well suited to English, since
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in English the morphological stem of a word virtually always occurs as a free form. However,
in many languages, stems are not so easily found. For example, in Spanish, most stems are
bound; for example, the word for “admire” has many different inflected forms (admir-ar,
admir-o, admir-as, admir-a, etc.), every one of which is affixed; *admir is not a legal form. To
address such cases, the hierarchical model needs to be provided with a more general version
of Parse Reliability: the parse [[x] y] must somehow be supported by evidence from other
words (e.g., [[ x] z]), and not just by the isolation form x. It is possible that an appropriate way
to generalize Parse Reliability already exists, but we leave this issue to future research.

12.2. Beyond phonemic transcription

Our training data are given in phonemic transcription, a classical form of phonological
representation widely employed in linguistics; it represents words in an idealized form from
which the overt phonetic forms are in principle predictable by rule up to the point of free
variation. However, in future research, it would be more realistic to employ a less-idealized
phonetic transcription, incorporating token-specific detail. As Beech and Swingley (2023)
demonstrate, this is likely to be a far greater challenge; the incorporation of a transcription
that reflects low-level phonological processes make word detection harder. In addition, for our
own purposes, it would also affect Parse Reliability values. For example, if the word petting,
phonemically /pɛtɪŋ/, is pronounced with the tapped [ɾ] variant of /t/, as in North American
English [ˈpɛɾɪŋ], then the corresponding hypothesized base will be [ˈpɛɾ], mismatching the
isolation form [ˈpɛt]. Thus, a challenge for future work is to do the same sort of learning we
have attempted, but with a corpus that is phonetically transcribed throughout (e.g., Khlystova,
Chong, & Sundara, 2023; Pitt et al., 2007); or still more ambitiously, a corpus of speech
waveforms.

12.3. Moving to joint learning

In our hierarchical model, learning proceeds sequentially: first, the utterances are divided
into words, then the words are divided into morphemes, including affixes. This arrangement
is not a logical necessity; we might alternatively have pursued joint learning, in which both
learning tasks are addressed at once with information flow between the two. The joint learning
strategy has proven effective in other domains (Dillon, Dunbar, & Idsardi, 2013; Feldman
et al., 2013; Goldwater, 2018; Kemp, Perfors, & Tenenbaum, 2007; Martin et al., 2013).

We give an example showing why joint learning might be helpful here. In Section 8.5, we
noted a serious problem for our hierarchical strategy involving [-ɪŋ]: all the word-discovery
models we examined tended to parse [ɪŋ] as a separate word. This deprives the affix-discovery
component of the [ɪŋ]-containing words it needs to learn the suffix [-ɪŋ] on schedule. In prin-
ciple, we would like it to be the case that evidence arising during affix discovery (e.g., the
high Parse Reliability score for [-ɪŋ]) could be useful at the word level: the very fact that [-ɪŋ]
works well as a suffix should discourage the model from treating it as a word; this can be
done, in principle, under joint learning, but not in our serial arrangement. Hence, it seems
worth exploring the issue of joint learning further.
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We note that Adaptor Grammars, which we have here used solely as the basis of word-
discovery (Section 5.3), do in fact implement the joint-learning strategy, for they learn all
of the user-defined levels in parallel. Unfortunately, we have not found a way to deploy this
approach in a way that yields effective results. Our Adaptor Grammars can be set up to do
fairly well at finding the content of one particular level (word or morpheme); but when they
do this, the material found at the other levels emerges as linguistically nonsensical, not the
meaningful level that we had been seeking.

To achieve a better joint model in the future, we suggest the following four practices
may be helpful. First, as argued above (Sections 7.3 and 8.6), forming a proto-lexicon, and
using it—not the raw input data—as the basis for learning morphology is likely to be more
effective. Second, using distinct principles to carry out word detection versus affix detec-
tion (Section 7.2) is advisable. Third, we think it would be beneficial for the joint learning
system to incorporate phonotactic learning as well, as in Adriaans and Kager (2010). Lan-
guages impose phonotactic restrictions at both the word level and the stem level, which can
serve as cues for the learning of words and morphemes. For instance, the fact that [dl] is
impossible stem-finally can be used to rule out morphological parses that have an impossi-
ble stem, for instance, *[[sidl]ɪŋ] for seedling. For word learning, it is well established that
infants can make use of phonotactic information (e.g., Friederici & Wessels, 1993; Jusczyk,
Houston, & Newsome, 1999; Mattys, Jusczyk, Luce, & Morgan, 1999; Johnson & Jusczyk,
2001; Mattys & Jusczyk, 2001; Gonzalez-Gomez & Nazzi, 2013). Fourth, after a certain
point, the infant is abstracting syntactic knowledge from the input stream. With joint learning,
this could also assist in the learning of affixes. For example, learning the syntactic category
verb improves the basis for detecting [-ɪŋ] as a suffix, since [-ɪŋ] generally attaches to verbal
stems.

Putting all these elements together, we suggest a future architecture for joint learning. We
imagine an expanding proto-lexicon whose entries are annotated (and reannotated) for their
morphological structure. The proto-lexicon is the domain from which the infant extracts cru-
cial generalizations involving morphology and phonotactics. In parsing the input stream, the
infant makes use of all her knowledge (lexical, morphological, phonotactic, syntactic) in find-
ing the most likely parse, and uses the result to update her proto-lexicon. Further, as lexical
entries are installed and updated, the infant’s internal models of morphology, phonotactics,
and syntax are likewise updated, and so the virtuous cycle continues.
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Notes

1 Some possible examples: Pearl and Sprouse (2013) use syntactic trees to distributionally
learn “island constraints,” and Wilson and Gallagher (2018) use distinctive features to
distributionally learn phonotactics from sparse data.

2 We describe linguistic forms using the symbols of the International Phonetic Alpha-
bet (https://www.internationalphoneticassociation.org/IPAcharts/inter_chart_2018/
IPA_2018.html).

3 Mintz (2013) did not find evidence for learning of [-ɪŋ] in 8-month-old infants. This
may have been because in the Willits et al., and Kim and Sundara studies, the targets
were short and phonologically very simple.

4 Our use of a phonetically transcribed corpus follows mainstream practice, although the
degree to which infants have segmental representations is an open research question
(e.g., Jusczyk & Derrah, 1987). In principle, our research might be compatible with
infants having presegmental representations, since we could make use of models of
word segmentation that are based on the raw speech signal (e.g., Park & Glass, 2008;
Kamper, Elsner, Jansen, & Goldwater, 2015; Algayres et al., 2022). However, the rel-
ative computational simplicity of segmentally based segmentation leads us to prefer it
here.

5 For further counts, including of individual suffixes, see Section 8.1.1.
6 Such behavior become even more likely when the language being parsed has a richer

morphological structure than English; see Loukatou, Stoll, Blasi, and Cristia (2022).
7 To be sure, the words of the proto-lexicon sometimes do bear meanings, as demon-

strated by Bergelson and Swingley (2013). However, according to Bergelson and
Swingley, the number of meaningful words is probably rather few (around 20 or so
by 14 months of age); such numbers do not support morphological learning in any of
the models we have considered.

8 For whether these processes operate sequentially, as the text above implies, or rather in
parallel, see Section 12.3.

9 Precision is standardly defined as correct guesses/guesses, recall as correct
guesses/correct answers, and F-score as the harmonic mean of precision and recall.
For F-scores, in cases where recall was zero (no instances found), we entered a value of
zero for precision, rather than Undefined (0/0). We likewise assigned an F-score of zero
by fiat when both precision and recall came out as zero.

10 The full set of 27 models that we examined is given in the Supplementary Materials,
Section A.
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11 The F-scores in (11) and (12) can only be taken as a rough evaluation of the models,
since the models differ in the amount of prior knowledge they assume—AG Phonotac-
tic, for instance, relies on a particular preinstalled theory of syllable structure. There
seems to be no straightforward way to include such factors in our evaluation, since the
preinstalled content used by the various models is so different in character.

12 The research goal of Johnson, Pater, Staubs, and Dupoux (2015) was to discover both
words and phonological processes simultaneously; since the latter are beyond the scope
of this article, we turned off phonology for purposes of our learning simulations.

13 These summed values are not used in at this stage of modeling; rather, we analyze [-z]
and [-s], and [-d] and [-t], separately and average the results. The Terminus Frequency
values for the individual suffixes are: [-z] 12.7%, [-s] 7.5%, [-d] 7.1%, and [-t] 10.6%.
The corpus type count is 3213.

14 Fewer than 700 data points are visible, since a great number cluster at or near the origin.
15 As do adults: Crepaldi, Rastle, and Davis (2010) show that stem effects on lexical deci-

sion (participants slow to reject [[gas]ful] as a word) evaporate when the affix is in the
wrong position, as in [ful[gas]].

16 On the scattergram of (23), its coordinates are (0.0006, 0).
17 Of course, -ly and un- are learned eventually. However, since the distributional evidence

for them is so weak, it seems likely that they are learned later on, when the child is able
to make use of meaning.
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