
lrlier' representa-

lay well extend to
judgements have

~ can imagine that
by speaker-based
'ected on the basis
, which may only
westigation.

10

Modelling Productivity with
the Gradual Learning Algorithm:
The Problem of Accidentally
Exceptionless Generalizations

ADAM ALBRIGHT AND BRUCE HAYES

10.1 Introduction

Many cases of gradient intuitions reflect conflicting patterns in the data that a
child receives during language acquisition. ' An area in which learners fre­
quently face conflicting data is inflectional morphology, where different
words often follow different patterns. Thus, for English past tenses, we have
wing'"'-J winged (the most common pattern in the language), wring"-' wrung
(a widespread [1] '"'-J [A] pattern), and sing'"'-J sang (a less common [r] '"'-J [ee]
pattern). In cases where all of these patterns could apply, such as the novel
verb spling, the conflict between them leads English speakers to entertain
multiple possibilities, with competing outcomes falling along a gradient scale
of intermediate well-formedness (Bybee and Moder 1983; Prasada and Pinker
1993; Albright and Hayes 2003).

In order to get a more precise means of investigating this kind of gradience,
we have over the past few years developed and implemented a formal
model for the acquisition of inflectional paradigms. An earlier version of
our model is described in Albright and Hayes (2002), and its application to
various empirical problems is laid out in Albright et al. (2001), Albright
(2002), and Albright and Hayes (2003). Our model abstracts morphological
and phonological generalizations from representative learning data and uses

I For helpful comments and advice we would like to thank Paul Boersma, Junko Ito, Armin Mester,
Jaye Padgett, Hubert Truckenbrodt, the editors, and our cwo reviewers, absolving them for any
shortcomings.

,
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them to construct a stochastic grammar that can generate multiple forms for
novel stems like spling. The model is tested by comparing its 'intuitions',
which are usually gradient, against human judgements for the same forms.

In modelling gradient productivity of morphological processes, we have
focused on the reliability of the generalizations: how much of the input data
do they cover, and how many exceptions do they involve? In general, greater
productivity is correlated with greater reliability, while generalizations cover­
ing few forms or entailing many exceptions are relatively unproductive. For
English past tenses, most generalizations have exceptions, so finding the
productive patterns requires finding the generalizations with the fewest
exceptions. Intermediate degrees of well-formedness arise when the generaliza­
tions covering different patterns suffer from different numbers of exceptions.

The phenomenon of gradient well-formedness shows that speakers do not
require rules or constraints to be exceptionless; when the evidence contlicts, they
are willing to use less than perfect generalizations. One would expect, however,
that when gradience is observed, more reliable generalizations should be
favoured over less reliable ones. In this article, we show that, surprisingly, this
is not always the case. In particular, we find that there may exist generalizations
that are exceptionless and well-instantiated, but are nonetheless either com­
pletely invalid, or are valued below other, less reliable generalizations.

The existence of exceptionless, but unproductive patterns is a challenge for
current approaches to gradient productivity, which generally attempt to extend
patterns in proportion to their strength in the lexicon. We offer a solution for
one class of these problems, based on the optinlality-theoretic principle of
constraint conflict and employing the Gradual Learning Algorithm (Boersma
1997; Boersma and Hayes 2001). In the final section ofthe paper we return to our
earlier work on gradience and discuss the implications ofour present findings.

10.2 Navajo sibilant harmony

The problem of exceptionless but unproductive generalizations arose in our
efforts to extend our model to learn non-local rule environments. The first
example we discuss comes from sibilant harmony in Navajo, a process
described in Sapir and Hoijer (1967).

Sibilant harmony can be illustrated by examining the allomorphs of the
s-perfective prefix. This prefix is realized as shown in (10.1) (examples from
Sapir and Hoijer):2

2 We have rendered all transcriptions (including Sapir and Hoijer's) in near-IPA, except that we use
[c ch c' HI for [tJ tJh tf' 1'31 in order to depict the class of nonanterioT sibilants more saliently.

r
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(10.2) 1_ ((+seg])* (-anterior]

10.3 The learning model

Our learning system employs some basic assumptions about representations
and rule schemata. We assume that words are represented as sequences of
phonemes, each consisting of a bundle of features, as in Chomsky and Halle
(1968). Rules and constraints employ feature matrices that describe
natural classes, as well as variables permitting the expression of non-local
environments: ([ +F]) designates a single skippable segment of the type [+F],
while ((+F])* designates any number of skippable [+F] segDlents. Thus, the
environment in (10.2):

b. [si-] or [si-] if somewhere later in the stem is a (-anterior] sibilant,
as in (si-the:z] "" [si-the:i] 'they two are lying'
(free variation)

c. [si-] otherwise, as in (si-thf] 'he is lying'3

A fully realistic simulation of the acquisition of Navajo sibilant harmony
would require a large corpus of Navajo verb stems, along with their
s-perfectives. Lacking such a corpus, we performed idealized simulations
using an artificial language based on Navajo: we selected whole Navajo
words (rather than stems) at random from the electronic version of Young
et al.'s dictionary (1992), and constructed s-perfective forms for them by
attaching [si-] or [si-] according to the pattern described in (10.1).

if the first segment of the stem is a (-anterior]
sibilant ([e, C', eh, s, i]), for example in lsi-chit]
'he is stooping over'

(10.1) a. [si-]:e multiple forms for
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(si-pa:?]

[si-e'li]

[pa:?]

[C'li]b.

can be read 'where a non-anterior segment follows somewhere later in the
word' ([ +seg] denotes the entire class of segments).

The model is given a list of pairs, consisting of bases and inflected forms.
For our synthetic version of Navajo, such a list would be partially represented
by (10.3):

(10.3) a.

.izations arose in our
,ironments. The first
n Navajo, a process

1e al1omorphs of the
10.1) (examples from

near-lPA, except that we use
sibilants more saliently.

3 Sapir and Hoijer specifically say (1961' 14-15): 'Assimilation nearly always occurs when the two
consonants are close together (e.g. 51-ca:?, from sl-ca.:? "a mass lies"; ... but it occurs less often when
the two consonants are at a greater distance:
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I 1

: c. [khesk~:] [si-khesH:] c. [khesk~:] [si-khesH:] :
I

I
I

: d. [t1e:i] [si-t1e:i] d. [Me:i] [si-tfe:i]
I
I

I

: e. [th~s] [si-thas] e. [th~s] [si-th~s]
I
L _

Where free variation occurs, the learner is provided with one copy of each
variant; thus, for (1O.3f) both [khgka:] "-' [si-khesk~:] and [khgk~:] "-'
[si-khgka::] are provided.

The goal of learning is to determine which environments require [si-],
which require [si-], and which allow both. Learning involves generalizing
bottom-up from the lexicon, using a procedure described below. Generaliza­
tion creates a large number of candidate environments; an evaluation metric
is later employed to determine how these environments should be employed
in the final grammar.

[si-C'H]

[si-cho:jin]

II. PREFIX [si-]

b. [eli]

a. [cho:jin][si-pa:?]

[si-k'az]

[si-si:~]

[si-tho:?]

[si-kan]

I. PREFIX [si-]

b. [kan]

a. [pa:?]

f. [k'az]

g. [si:~]
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d. [kin] [si-kin]

e. [k'az] [si-k'ilz]

f. [khesk~:] [si-khesld:J, [si-kheska:]

g. lsi:!] [si-sd]

h. [thas] [si-th~s], [si-NiS]

1. [thO:?] [si-tho:?]

J. [rle:z] [si-cle:zJ, [si-tied]
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l1e copy of each
1d [khesk~:] rv

Learning begins by parsing forms into their component morphemes and
grouping them by the morphological change they involve. The data in (10.3)

exhibit two changes, as shown in (10.4); the box surrounds cases of free
variation.

For each change, the system creates hypotheses about which elements in the
environment crucially condition the change. It begins by treating each pair as
a 'word-specific rule', separating out the changing part from the invariant
part. Thus, the first three [5i-] forms in (4) would be construed as in (5):

(10.5) a. 0 --> 5i / [ _ ch6:jin]

b. 0 --> 5i / [ _ c'ii]

c. 0 --> 5i / [_ khesk~:1

Next, the system compares pairs of rules that have the same change (e.g. both
attach [5i- J), and extracts what their environments have in common to form a
generalized rule. Thus, given the word-specific rules in (1O.6a), the system
collapses them together using features, as in (1O.6b).

(10.6) a. o ~ 5l! [ _ tha:5]

0~5l! [_He:zJ

b. 0~ 51 / [- th a 5

+ 0~ 51 [- tl er z

[
-sonorant ] [+s~llabiC] r-sono.rant 1
-contmuant -high +contmuant
+anterior -round -anterior

+strident

=0~5i/[_

v,
C

In this particular case, the forms being compared are quite similar, so
determining which segment should be compared with which is unproblem­
atic. But for forms of different lengths, such as [ch6:jinJ and [C'ii] above, this
is a harder question.4 We adopt an approach that lines up the segments that
are most similar to each another. For instance, (10.7) gives an intuitively
reasonable alignment for [cho:jin] and [C'Ii]:

(10.7) ch 6: j i n

I
1

[51-tl e:z]

[51-C'1<IJ

x: [51-]

ts require [si-],
ves generalizing
low. Generaliza­
laluation metric
lid be employed

• The issue did not arise in an earlier version of our model (Albright and Hayes 2002). which did
not aspire to learn non-local environments, and thus could use simple edge-in alignment.
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(k) (a.:)

2. Unmatched material is
designated as optional,
notated with parentheses.

[

-sonorant ]
-contin

[_ +spread gl.
-constr. gl.

l. Shared material is
collapsed using the
feature system.

[

,sonorant ] [ II b" ]" +sy a Ie
I [ ,contm -hiuh

- +spread gl. ,ro~nd
-constr. gl.

3. Sequential optional elements are collapsed
into a single variable, encompassing all of
their shared features (e.g.( [+F])*).

o --? 51

o --? 51

o --? 51

+ 0 --?51

(10.8)

Good alignments have two properties: they match phonetically similar
segments such as [ehJ and [C'], and they avoid leaving too many segments
unmatched. To evaluate the similarity of segments, we employ the
similarity metric from Frisch et al. (2004). To guarantee an optimal
pairing, we use a cost-minimizing string alignment algorithm (described in
Kruskal 1999) that efficiently searches all possible alignments for best total
similarity.

Seen in detail, the process of collapsing rules is based on three principles,
illustrated in (10.8) with the collapsing of the rules 0 -+ 51 / [ _ kheska:]
and 0 -+ 51 / [ _ than

Paired feature matrices are collapsed by constructing a new matrix, containing
all of their shared features (see step 1). Next, any material in one rule that is
unmatched to the other is designated as optional, represented by parentheses
(step 2). Finally, sequences of consecutive optional elements are collapsed
together into a single expression of the form (F)*, where F is the smallest
natural class containing all of the collapsed optional elements (step 3).

The process is iterated, generalizing the new rule with the other words in
the learning data; the resulting rules are further generalized, and so on. Due to
memory limitations, it is necessary periodically to trim back the hypothesis
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onetically similar
o many segments
we employ the

ntee an optimal
thm (described in
~nts for best total

set, keeping only those rules that perform best.s Generalization terminates
when no new 'keeper' rules are found.

We find that this procedure, applied to a representative set of words,
discovers the environment of non-local sibilant harmony after only a few
steps. One path to the correct environment is shown in (10.9):

n three principles,
:if [ _ kheska::]

[C'li]

[z 1: t]

rtf w 6 zi: t p ah I][-anterior] ([+segJ)"

[
-continuant] ([+se J)"
-antenor g

[ ] [
+son ] ~ ~-continuant -syllabic '

-anterior (~~::l h +anteriorJ

(k) (~:~

latched material is
~nated as optional,
ted with parentheses.

0--7 sl-1 [_ ([+segJ)" [-anterior] ([+segJ)"]

([+seg])"j

matrix, containing
in one rule that is
ted by parentheses
ents are collapsed
e F is the smallest
~nts (step 3).

the other words in
, and so on. Due to
ack the hypothesis

The result can be read: 'Prefix [51-] to a stem consisting of any number of
segments followed by a nonanterior segment, followed by any number of
segments.' (Note that [-anterior] segments in Navajo are necessarily sibilant.)
In more standard notation, one could replace ([ +seg]) * with a free variable X,
and follow the standard assumption that non-adjacency to the distal word
edge need not be specified, as in (10.10):

(10.10) 0 -4 51- / _ X [-anterior]

We emphasize that at this stage, the system is only generating hypotheses. The
task of using these hypotheses to construct the final grammar is taken up in
Section 10.5.

5 Specifically: (a) for each word in the training set, we keep the most reliable rule (in the sense of
Albright and Hayes 2002) that derives it; (b) for each change, we keep the rule that derives more forms
than any other.
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10.4 Testing the approach: a simulation

We now show that, given representative learning data, the system just
described can discover the rule environments needed for Navajo sibilant
harmony. As noted above, our learning simulation involved artificial Navajo
s-perfectives, created by attaching appropriate prefix allomorphs to whole
Navajo words (as opposed to stems). Selecting 200 words at random,6 we
attached prefixes to the bases as follows, following Sapir and Hoijer's charac­
terization: (a) if the base began with a nonanterior sibilant, we prefixed (5i-]
(there were nineteen of these in the learning set); (b) ifthe base contained but
did not begin with a nonanterior sibilant, we made two copies, one prefixed
with (5i-], the other with (si-] (thirty-seven of each); (c) we prefixed (si-] to
the remaining 144 bases.

Running the algorithm just described, we found that among the 92 envir­
onments it learned, three were of particular interest: the environment for
obligatory local harmony, (lO.na); the environment that licenses distal har­
mony, ((lO.nb); note that this includes local harmony as a special case); and
the vacuous 'environment' specifying the default allomorph [si-], (lO.llC).

(lO.n) a. Obligatory local harmony

0-+ [5i-] / _ [-anterior]

b. Optional distal harmony (= (10.10))

0-+ [5i-] / _ X (-anterior]

c. Default [S1-]

0-+ [si-] / _ X

The remaining eighty-nine environments are discussed below.

10.5 Forming a grammar

These environments can be incorporated into an effective grammar by treating
them not as rules, as just given, but rather as optimality-theoretic constraints of

6 From the entire database of 3,023 words, we selected 2,000 words at random, dividing this set into
ten batches of 200 words each. To confirm the generality of our result, we repeated our simulation on
each 200-word training sample. Due to space considerations, we report here the results of only one of
the ten trials; the remaining nine were essentially the same in that they all discovered the environments
in (lO.n). The primary difference between trials was the precise formulation of the other, unwanted
constraints (Section 10.6), but in every case, such constraints were correctly ranked below the crucial
constraints, as in (10.13).
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morphology (Boersma 1998 b; Russell 1999; Burzio 2002; MacBride 2004). In this
approach, rule (lO.lla) is reconstrued as a constraint: 'Use [si-] /_ [-anterior]
to form the s-perfective.' This constraint is violated by forms that begin with a
nonanterior segment, but use something other than [si-] to form the s-perfect­
ive. The basic idea is illustrated below, using hypothetical monosyllabic roots:

(10.12) MORPHOLOGICAL CANDIDATES CANDIDATES
THAT OBEY THAT VIOLATE

BASE USE [si-] /_ USE [S1-] /_
[-anterior] [-anterior]

[sap] [sl-sap] *[si-sap], *[mu-sap], etc.

[tap] all none

It is straightforward to rank these constraints in a way that yields the target
pattern, as (10.13) and (10.14) show:

(10.13) USE [5\-11 _ [-ant]» I USE [s\-I I _ X, USE [5\-1 1_ X [-antI I»all others

~
ranked in free variation

(10.14) a.
Is\-Cldl USE [s\-l/_[-antl USE [sl-j/_X [-antI USE [si-]l_X

@' 51-ad *

* sl-ad *! *
;

b. Isi-te:iJ

<ir 51-te:z

@' si-te:z

USE [sl-)/__[-antl USE [sl-J/_X [-ant) ! USE [si-J/_X

*
*!

lelOW.

grammar by treating
eoretic constraints of

ldom, dividing this set into
repeated our simulation on
re the results of only one of
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For (1O.14b), the free ranking of USE [si-] / _ X ['-ant] and USE [si-] / _ X
produces multiple winners generated in free variation (Anttila 1997).

10.6 Unwanted constraints

The eighty-nine constraints not discussed so far consist largely ofcomplicated
generalizations that happen to hold true of the learning data. One example is
shown in (10.15):

(10.15) USE si- / _ ([-round])* [+ante~ior ] ([ -consonantal])*]
+contmuant

As it happens, this constraint works for all thirty-seven forms that meet its
description in the learning data. However, it makes profoundly incorrect
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predictions for forms outside the learning data, such as the legal but non­
existing stem (cala/ (10.16).

7 A reviewer points out that another approach to weeding out unwanted generalizations is to train
the model on various subsets of the data, keeping only those generalizations that are found in all
training sets (cross-validation). Although this technique could potentially eliminate unwanted gener­
alizations (since each subset contains a potentially different set of such generalizations), it could not
absolutely guarantee that they would not be discovered independently in each subset. Given that such
constraints make fatal empirical predictions, we seek a technique that reliably demotes them, should
they arise.

*[+antcrior JUSEsi-1 - ([-round]) . ([-consonantallY]1\ +cytmuant I
si- cal a

(10.16)

If ranked high enough, this constraint will have the detrimental effect of
preventing [si-cala] from being generated consistently. We will call such
inappropriate generalizations 'junk' constraints.

One possible response is to say that the learning method is simply too
liberal, allowing too many generalizations to be projected from the learning
data. We acknowledge this as a possibility, and we have experimented with
various ways to restrict the algorithm to more sensible generalizations. Yet we
are attracted to the idea that constraint learning could be simplified-and rely
on fewer a priori assumptions-by letting constraints be generated rather
freely and excluding the bad ones with an effective evaluation metric. Below,
we layout such a metric, which employs the Gradual Learning AlgorithmJ

10.7 The Gradual Learning Algorithm

The Gradual Learning Algorithm (GLA: Boersma 1997; Boersma and Hayes
2001) can rank constraints in a way that derives free variation and matches the
frequencies of the learning data. The GLA assumes a stochastic version of
optimality theory, whereby each pair of constraints {A, B} is assigned not a
strict ranking, but rather a probability: 'A dominates B with probability P.'
Thus, the free ranking given in (10.13) above would be captured by assigning
the constraints USE [si-J /_Xand USE [si-J I_X [-ant] a 50-50 ranking
probability.

Any such theory needs a method to ensure that the pairwise probabilities
assigned to the constraints are mutually consistent. In the GLA, this is done by
arranging the constraints along a numerical scale, assigning each constraint a
ranking value. On any particular occasion that the grammar is used, a
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-------------------
selection point is adopted for each constraint, taken from a Gaussian prob­
ability distribution with a standard deviation fixed for all constraints. The
constraints are sorted by their selection points, and the winning candidate is
determined on the basis of this ranking. Since pairwise ranking probabilities
are determined by the ranking values,8 they are guaranteed to be mutually
consistent.

10.8 The need for generality

Let us now consider the application of the GLA to Navajo. Naively, one might
hope that when the constraints are submitted to the GLA, the junk will settle
to the bottom. However, what one actually finds is that the junk constraints
get ranked high. Although USE [si-] 1_ [-ant] does indeed get ranked on
top, the crucial constraints USE [si-] 1_ X [-ant) and USE [S1-]/__ X are

swamped by higher-ranking junk constraints, and rendered largely ineffective.
The result is a grammar that performs quite well on the training data
(producing something close to the right output frequencies for every stem),
but fails grossly in generating novel forms. The frequencies generated for
novel forms are determined by the number of high ranking junk constraints
that happen to fit them, and do not respect the distribution in (lO.n).

The problem is a classic one in inductive learning theory. If a learning
algorithm excessively tailors its behaviour to the training set, it may learn a
patchwork of small generalizations that collectively cover the learning data.
This does not suffice to cover new forms-which, after all, is the main
purpose of having a grammar in the first place!

Why does the GLA fail? The reason is that it demotes constraints only when
they prefer losing candidates. But within the learning data, the junk con­
straints generally prefer only winners-that is precisely why they emerged
from the inductive generalization phase of learning. Accidentally true gener­
alizations thus defeat the GLA as it currently stands. What is needed is a way
for the GLA to distinguish accidentally true generalizations from linguistically
significant generalizations.

10.9 Initial rankings based on generality

Boersma (1998) suggested that for morphology, initial rankings should be
based on generality-the more general the constraint, the higher it is
ranked before learning takes place. It turns out that this insight is the key

, A spreadsheet giving the function that maps ranking value differences to pairwise probabilities is
posted at http://www.linguistics.ucla.edu/people/hayes/GLA/.
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In the 200-word Navajo simulation discussed above, some representative
generality values are shown in (10.18).

number of forms that a constraint applies to
-"-''---------

total number of forms exhibiting the change that the constraint requires

CONSTRAINT RELEVANT FORMS WITH GENERALITY
FORMS THIS CHANGE

USE [si-] /_
19 ·339[-anterior]

USE [5i-J /_
56 [sH forms

S6 1
X [-anterior]

USE [si-] /_ 181 1
X 181 [si-] forms
Constraint (1O.1S)
('junk' constraint) 37 .204

(10.18)

to solving the Navajo problem. What is needed, however, is a way to
characterize generality in numerical terms. There are various possible

approaches; Chomsky and Halle (1968), for example, propose counting
symbols (fewer symbols = greater generality). Here, we adopt an empirical
criterion: a morphological constraint is maximally general if it encompasses
all of the forms that exhibit its structural change. We use the fraction in
(10.17):

(10.17)

The idea, then, is to assign the constraints initial ranking values that

reflect their generality, with more general constraints on top. If the scheme
works, all the data will be explained by the most general applicable con­
straints, and the others will remain so low that they never playa role in

selecting output forms.
In order to ensure that differences in initial rankings are large enough to

make a difference, the generality values from (10.17) were rescaled to cover a
huge probability range, using the formula in (10.19):

(10.19) For each constraint c, initial ranking valuec =

Generalityc-GeneralityminSOO X ----.-- . -
GeneralItymax-GeneralItymin
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where Generalitymin is the generality of the least general constraint, and
Generalityma"{ is the generality of the most general constraint.

10.10 Employing generality in a learning simulation

We implemented this scheme and ran it multiple times on the Navajo
pseudodata described above. For one representative run, it caused the relevant
constraints (including here just one representative 'junk' constraint (10.15)),
to be rartked as follows:

(10.20) GENERALITY INITIAL RANKING FINAL RANKING

USE [si-] I_X [-ant]
550

1,1 1 -500,500

~c~
514.9

USE [sl-] I-X 499.9,500.1
.9 450 450

.8 400 400

.7 350 350
100,000

.6 300 training 300
I cycles

.5 250 250
I

.4 200 200

USE [si-] 1_ [-ant] .339 .3 150.9 150 150

'Junk' constraint .204 .2 79.7 100 100..
(10.15) .1 19.2

0 0 0

The final grammar is depicted schematically in (10.21), where the arrows show
the probabilities that one constraint will outrank the other. When the differ­
ence in ranking value exceeds about 10, the probability that the ranking will
hold is essentially 1 (strict ranking).

(10.21) USE [s]-) /_ [-ant]
514.9

Undominated local harmony

USE [sl-] I_X +-----+ USE [si-] /_ X [-·anterior]
500.1 .5 499.9

11 Free variation for non-local harmony

[
+anterior J *

USE 5i- /_([-round])* +continuant ([-consonantal])]
19.2

Potentially harmful constraints like (10.15) safely outranked
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This approach yields the desired grammar: all of the junk constraints (not just
(10.15)) are ranked safely below the top three.

The procedure works because the GLA is error-driven. Thus, if junk
constraints start low, they stay there, since the general constraint that does
the same work has a head start and averts any errors that would promote the
junk constraints. Good constraints with specific contexts, on the other hand,
like 'USE [si- J/_ [-ant]', are also nongeneral-but appropriately so. Even if
they start low, they are crucial in averting errors like "[si-sap], and thus they
are soon promoted by the GLA to the top of the grammar.

We find, then, that a preference for more general statements in grammar
induction is not merely an aesthetic bias; it is, in fact, a necessary criterion in
distinguishing plausible hypotheses from those which are implausible, but
coincidentally hold true in the learning sample.

IO.n Analytic discussion

While the Navajo simulation offers a degree of realism in the complexity of
the constraints learned, hand analysis of simpler cases helps in understanding
why the simulation worked, and ensures that the result is a general one.

To this end, we reduce Navajo to three constraints, renamed as follows: (1)

USE [si-], which we will call DEFAULT, (2) the special-context USE [si-] /_ X
[-ant], which we will call CONTEXTUAL [si- J, and (3) the accidentally­
exceptionless (10.15), which we will call ACCIDENTAL [Sl-J. ACCIDENTAL [si-]
is exceptionless because the relevant forms in the training data happen not to
contain non-anterior sibilants.

Suppose first that all harmony is optional (50/50 variation). Using the
normal GLA, all constraints start out with equal ranking values, set conven­
tionally at 100. The constraints CONTEXTUAL [5i-] and DEFAULT should be
ranked in a tie to match the 50/50 variation. During learning (see Boersma
and Hayes 2001: 51-4), these two constraints vacillate slightly as the GLA seeks
a frequency match, but end up very close to their original value of 100.

ACCIDENTAL [si-] will remain at exactly 100, since the GLA is error driven
and none of the three constraints favours an incorrect output for the training
data that match ACCIDENTAL [si-] (DEFAULT and ACCIDENTAL [si-] both
prefer [sl- J, which is correct; and CONTEXTUAL [si-] never matches these
forms). Thus, all three constraints are ranked at or near 100. This grammar is
incorrect; when faced with novel forms like (10.16) that match all three
constraints, CONTEXTUAL [5i-] competes against two equally ranked antag­
onists, deriving [Sl-J only a third of the time instead of half.
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Initial rankings based on generality (Section 10.9) correct this problem.
Given that DEFAULT and CONTEXTUAL [S1-J cover all [sl-] and [S1-] forms
respectively, they will be assigned initial ranking values of 500. Define the
critical distance C as the minimum difference between two constraints that is
needed to model strict ranking. (Informal trials suggest that a value of about
10.5, which creates a ranking probability of .9999, is sufficient.) It is virtually
certain that the initial ranking value for ACCIDENTAL [si-] will be far below
500-C, because accidentally true constraints cannot have extremely high
generality, other than through an unlikely accident of the learning data.
Ranking proceeds as before, with DEFAULT and CONTEXTUAL [51-] staying
around 500 and ACCIDENTAL ·[sl-] staying where it began. The resulting
grammar correctly derives 50/50 variation, because ACCIDENTAL [sl-] is too
low to be active.

Now consider what happens when the data involve no free variation; that is
[si-] is the outcome wherever CONTEXTUAL [si-] is applicable. When initial
rankings are all equal, [51-] forms will cause CONTEXTUAL [5i-] to rise and
DEFAULT to fall, with their difference ultimately reaching C (CONTEXTUAL
[SI-]: 500+Ch; DEFAULT: 500-CI2). Just as before, ACCIDENTAL [si-] will
remain ranked where it started, at 500. The difference of Ch between CON­
TEXTUAL [si-] and ACCIDENTAL [si-], assuming C = 10.5, will be 5.25, which
means that when the grammar is applied to novel forms matching both
constraints, [sl-] outputs will be derived about 3 per cent of the time. This
seems unacceptable, given that the target language has no free variation.
Again, the incorrect result is avoided under the initial-ranking scheme of
Section 10.9, provided that ACCIDENTAL [sl-] is initially ranked at or lower
than 500-Ch which is almost certain to be the case.

In summary, schematized analysis suggests that the Navajo result is not
peculiar to this case. The effect of accidentally true generalizations is strongest
when optionality is involved, but they pose a threat even in its absence. Initial
rankings based on generality avoid the problem by keeping such constraints a
critical distance lower than the default, so they can never affect the outcome.

10.12 The realism of the simulation

In this section we address two possible objections to our model.

10.12.1 Phonological rules versus allomorph distribution

Navajo sibilant harmony is typically analysed as a phonological process,
spreading [-anterior] from right to left within a certain domain. The grammar
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learned by our model, on the other hand, treats harmony as allomorphy ([si-]
versus [5i- J), and cannot capture root-internal harmony effects. Thus, it may
be objected that the model has missed the essential nature of harmony.

In this connection, we note first that harmony is often observed primarily
through affix allomorphy-either because there is no root-internal
restriction, or because the effect is weaker within roots, admitting greater
exceptionality. For these cases, aUomorphy may be the only appropriate
analysis. For arguments that root-internal and afii\:al harmony often require
separate analyses, see Kiparsky (1968).

More generally, however, there still remains the question of how to unify
knowledge about allomorphy and root-internal phonotactics. Even when
affix:es and roots show the same harmony patterns, we believe that under­
standing the distribution of am"'<: allomorphs could constitute an important
first step in learning the more general process, provided there is some way of
bootstrapping from constraints on particular morphemes to more general
constraints on the distribution of speech sounds. We leave this as a problem
for future work.

10.12.2 Should arbitrary constraints be generated at all?

Another possible objection is that a less powerful generalization procedure
would never have posited constraints like (10.15) in the first place. Indeed, if
all constraints come from universal grammar (that is, are innate), the need to
trim back absurd ones would never arise. Against this objection can be cited
work suggesting that environments sometimes really are complex and syn­
chronically arbitrary (Bach and Harms 1972; Hale and Reiss 1998; Hayes 1999;

Blevins 2004). For instance, in examining patterns of English past tenses, we
found that all verbs ending in voiceless fricatives are regular, and that speakers
are tacitly aware of this generalization (Albright and Hayes 20(3). Not only
are such patterns arbitrary, but they can also be rather complex (see also
Bybee and Moder 1983). Regardless of whether such generalizations are
learned or innate, it seems likely that any model powerful enough to handle
the full range of attested patterns will need a mechanism to sift through large
numbers of possibly irrelevant hypotheses.

10.13 Modelling gradient productivity: the fate of reliability metric.s

As noted above, one of our long-term goals is to understand how gradient
productivity arises when the learner confronts conflicting data. The results
above challenge our earlier views, and in this section we layout ways in which
our previous approach might be revised.
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Earlier versions of our model evaluated contexts according to their accur­
acy, or reliability, defined as the ratio of the number of forms a ruie derives
correctly, divided by the total number of forms to which the rule is applicable.
We have found in many cases that we could model native speaker intuitions of
novel forms by using the reliability of the best rule that derives them (adjusted
slightly, in a way to be mentioned below). However, the results of our 1 avajo
simulations show that accuracy alone is not an adequate criterion for evalu­
ation, since assiduous rule discovery can sometimes find accidentally-true
(and thus perfectly accurate) generalizations which nonetheless lead to dis­
aster if trusted. The Navajo example illustrates why it is not enough to
evaluate the accuracy of each generalization independently; we must also
consider whether generalizatIons cover forms that are better handled by a
different generalization.9

Another possible failing of the reliability approach is that it is ill-suited to
capture special casel'elsewhere' relations (Kiparsky 1982). The environment
for [si-] in Navajo is difficult to express by itself, but easy as the complement
set of the [si-] environments. In optimality theory, 'elsewhere' is simply the
result of constraint ranking: a context-sensitive constraint outranks the
default. Unfortunately for the reliability-based approach, default environ­
ments such as (lO.llC) often have fairly high reliability (1811237 in
this case)-but that does not mean that they should be applied in the
special-allomorph context (e.g. of (lO.11a)).

In light of this, it is worth considering why we adopted reliability scores in
the first place. Ironically, the reason likewise involved accidentally-true gen­
eralizations, but of a different kind.

One of the phenomena that compelled us to use reliability scores was the
existence of small-scale patterns for irregulars, seen, for example, in English
past tenses. As Pinker and Prince (1988) point out, when a system includes
irregular forms, they characteristically are not arbitrary exceptions, but fall
into patterns, e.g. cling IV clung, fling IV flung, swing IV swung. These patterns
have some degree of productivity, as shown by historical change (Pinker 1999)

and 'wug' (nonce-word) testing (Bybee and Moder 1983; Prasada and Pinker
1993; Albright and Hayes 2003).10

0' A related problem, in which overly broad generalizations appear exaggeratedly accurate because
they contain a consistent subset, is discussed in Albright and Hayes (~002).

10 We restrict our discussion to phonological patterns; for discussion of patterns based possibly on
semantic, rather than phonological similarities, see Ramscar (200~). In principle, the approach
described here could be easily extended to include constraints that refer to other kinds of information;
it is an empirical question what properties allomorphy rules may refer to.
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b. spling [splII]] splung [SplAI]J 5-45

splinged [splII)d] 4.36

11 This is the largest set of 1 --. A verbs that yields an exceptionless generalization. There are other
subsets, such as cling, fling, and sling, that also lead to exceptionless generalizations, and these are also
generated by our model. The problem that we discuss below would arise no matter which set is
selected, and would not be solved by trying to, for example, exclude dig from consideration.

blug [blAg]

bligged [blIgd]

CHOICE FOR PAST RATING

a. blig [blI g]

(10.23) PRESENT STEM

The GLA, when comparing an exceptionless constraint against a more general
constraint that suffers from exceptions, always ranks the exceptionless con­
straint categorically above the general one. For cases like Navajo, where the
special constraint was (lO.lla) and the general constraint was (lO.llC),
the default constraint for [si-], this ranking is entirely correct, capturing the
special/default relationship. But when exceptionless (10.22) is ranked categor­
ically above the constraints specifying the regular ending for English (such as
USE [-d]), the prediction is that novel verbs matching the context of (10.22)

should be exclusively irregular (i.e. blig ....., blug, not *bligged). There is
evidence that this prediction is wrong, from wug tests on forms that match
(10.22). For instance, the wug test reported in Albright and Hayes (2003)

yielded the following judgements (scale: 1 worst, 7 best):

The problem is that our algorithm can often find environments for these
minor changes that are exceptionless. For example, the exceptionless minor
change in (10.22) covers the four verbs dig, cling, fling, and sling.!l

(10.22) I --, A/X [:~:.~ ] _ [:~:~::l ]J[ +past]

+VOlCe

The regular forms are almost as good or better than the forms derived by the
exceptionless rule.

We infer that numbers matter: a poorly attested perfect generalization such
as (10.22) is not necessarily taken more seriously than a broadly attested
imperfect generalization such as USE [-d]. For Navajo, strict ranking is
appropriate, since the special-environment constraint (lO.na) that must out­
rank the default (lO.llC) is robustly attested in the language. In the English
case, the special-environment constraint is also exceptionless, but is attested
in only four verbs, yet the GLA-in either version-ranks it on top of the
grammar, just as in Navajo.

, i
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It can now be seen why in our earlier work we avoided constraint interaction
and employed reliability scores instead. With reliability scores, it is simple to
impose a penalty on forms derived by rules supported by few data-following
Mikheev (1997), we used a statistical lower confidence limit on reliability.
Thus, for a wug form like blig, two rules of comparable value compete: the
regular rule (has exceptions, but vast in scope) versus (10.22) (no exceptions,
but tiny in scope). Ambivalence between the two is a natural consequence.

If reliability statistics are not the right answer to this problem, what is? It
seems that the basic idea that rules based on fewer forms should be downgraded
is sound. But the downgrade need not be carried out based on reliability
scores-it might also be made part of the constraint ranking process. In
particular, we propose that the basic principles of the GLA be supplemented
with biases that exert a downward force on morphological constraints that are
supported by few data, using statistical smoothing or discounting.

As of this writing we do not have a complete solution, but we have
experimented with a form of absolute discounting (Ney et al. 1994), imple­
mented as follows: for each constraint C, we add to the learning data an
artificial datum that violates C and obeys every other constraint with which C
is in conflict. Under this scheme, if C (say, (10.22) above) is supported by just
four forms, then an artificially-added candidate would have a ma.ior effect in
downgrading its ranking. But if C is supported by thousands of forms (for
example, the constraint for a regular mapping), then the artificially added
candidate would be negligible in its effect.

We found that when we implemented this approach, it yielded reasonable
results for the English scenario just outlined: in a limited simulation consist­
ing of the regulars in Albright and Hayes (2003) plus just the four irregulars
covered by (10.22), regular splinged was a viable competitor with splung, and
the relationships among the competing regular allomorphs remained essen­
tially unchanged.

There are many ways that small-scale generalizations could be downgraded
during learning. We emphasize that the development of a well-motivated
algorithm for this problem involves not .iust issues of computation, but an
empirical question about productivity: when real language learners confront
the data, what are the relative weights that they place on accuracy versus size
of generalization? Both experimental and modelling work will be needed to
answer these questions.l2

12 An unresolved question that we cannot address here is whether a bias for generality can be
applied to all types of phonological constraints, or just those that govern allomorph distribution. It is
worth noting that for certain other types of constraints, such as faithfulness constraints, it has been
argued that specific constraints must have higher initial rankings than more general ones (Smith
2000). At present, we restrict our claim to morphological constraints of the form 'USE X'.



10.14 Conclusion

The comparison of English and Navajo illustrates an important problem in
the study of gradient well-formedness in phonology. On the one hand, there
are cases such as English past tenses, in which the learner is confronted with
many competing patterns and must trust some generalizations despite some
exceptions. In such cases, gradient well-formedness is rampant, and the
model must retain generalizations with varying degrees of reliability. On the
other hand, there are cases such as Navajo sibilant harmony, in which
competition is confined to particular contexts, and the learner has many
exceptionless generalizations to choose from. In these cases, the challenge is
for the model to choose the 'correct' exceptionless patterns, and refrain from
selecting an analysis that predicts greater variation than is found in the target
language.

We seek to develop a model that can handle all configurations of gradience
and categoricalness, and we believe the key lies in the trade-off between
reliability and generality. We have shown here how our previous approach
to the problem was insufficient, and proposed a new approach using the GL\,
modified to favour more general constraints. The precise details of how
generality is calculated, and how severe the bias must be, are left as a matter
for future research.

., ~ 204 Gradience in Phonology
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