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Part I:  general comments  
 
Why modeling? 

• From the experimental point of view:  a way of finding 
fully-explicit hypotheses to test 

• From the theoretical point of view, particularly in 
phonology:  establishing contact between abstract 
theories and experimental data 
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A fourfold program for modeling in 
phonology 

 
I. Corpus compilation 

II. Classical analysis 
III. Design of learning algorithms 
IV. Paired testing of algorithms and humans 
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I. Compilation of a realistic data corpus  
 
• E.g. phonetic dictionary, speech database 

• Try to match the dialect/vocabulary of future 
experimental participants. 
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II. Classical phonological analysis  
 
• Goal is to avoid naïve inquiry by first finding and 

understanding the essential generalizations.   

• Use the corpus to check them. 
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III. Develop a learning procedure  
 
• This is implemented in software. 

• It incorporates the theoretical assumptions in explicit 
form. 

• It digests the corpus data. 

• It creates (or, fine-tunes) a phonological grammar. 
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IV. Paired testing 
 
• The grammar and experimental participants take the 

same test.   

• In many experiments, the stimuli are nonce forms, so we 
can test how learners have generalized from the data they 
encountered. 
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How a computational model can be used 
to engage with phonological theory 

 
• Fairly “deep” aspects of the theory can be embodied in 

the software code. 

• We can also provide different theories in the same 
software. 

• The software computes the concrete consequences of 
these changes for experimental data. 
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Modeling and experimentation can 
stimulate one another 

 
• With new models we reinterpret old data; they can shed 

new light on (newly explicit) theory. 

• Explicit models lead us to ponder what data would be 
needed to test them 

• They can help us construct the most informative nonce 
forms for experiments — model-guided stimulus 
design.  Examples: 
 Albright and Hayes (2001) 
 Hayes and White (in press) 



   10 
 

Practical consequence:  sharing is 
essential 

 
• Sharing of models by modelers to experimentalists — 

in easy-to-use, downloadable or online versions. 

• Sharing of full subject data by experimentalists to 
modelers —no data ever lose their usefulness. 
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An example of model-sharing worth 
emulating 

• Vitevitch and Luce’s Phonotactic Probability 
Calculator (2004) 

• On line: 
(www.people.ku.edu/~mvitevit/PhonoProbHome.html) 

• Extensively used in experimentation (133 cites on 
Google Scholar) 

• Easy to use 

• Embodies an explicit phonotactic theory — discussed 
here. 

 



   12 
 

 

 
 
Part II:  Case study 
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Topic:  Gradient phonotactic well-
formedness  

• Examples with English nonce words:   

 [blɪk]  (sounds great) 

 [pɔɪk]  (sounds odd) 

 [lbøːpr]  (sounds horrible) 

• Similar terms for (roughly) the same thing:  
wordlikeness, phonotactic probability, phonotactic 
grammaticality 

 



   14 
 

Two phonological theories of gradient 
phonotactic well-formedness 

 
• The theory underlying Vitevitch and Luce’s Phonotactic 

Probability Calculator (abbreviation:  VL) 

• A second theory, combining traditional phonology + 
maxent grammars. 

 



Vitevitch and Luce’s phonotactic theory 
• Words are made of sequences of speech sounds that 

occupy slots, arranged left-to-right. 
 
brick: 
 
 Slot 1 Slot 2 Slot 3 Slot 4 Slot 5  Slot 6  etc. 
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 b r ɪ k  

 
• Phonotactic well-formedness is based on the relative 

frequency with which slots are filled by different 
sounds in the vocabulary of the language as a whole. 
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Sample calculation 
• /b/ fills the first slot about 5.2% of the time.  

• A (modest) adjustment is made for token frequency of 
the slot-sharing words 

• Then you add the values in all slots; here .052 + .090 + 
.023 + .041 = .206. 

 



Vitevitch and Luce, Version II 
• Same approach, but instead divide the word into 

overlapping bigrams. 
 
brick: 
 
 Slot 1 Slot 2 Slot 3 Slot 4 Slot 5  Slot 6  etc. 
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 b + r r + ɪ  ɪ + k  
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Vitevitch and Luce’s claim: slot theory is 
“neutral” 

 
• “The method of calculating phonotactic probability that 

we employed was relatively neutral with regard to 
linguistic theory.” (2004, 485) 
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What would phonologists think of this 
claim? 

 
• My impression is that the model would be considered 

extremely controversial — why? 
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Two principles phonologists typically 
subscribe to 

• Phonology doesn’t count large numbers of things  
“4th X”, “5th X” doesn’t seem to happen in phonology 
— small numbers are the limit. 

• Phonology doesn’t count segments.   
Of the things that get counted, segments don’t seem to be 
included — instead, phonology counts hierarchical units 
like syllables, moras, feet.  
 For clear enunciations of both principles, see 

McCarthy and Prince (1986, 1). 
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Diagnosing the behavior of the 
VL model 
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How do slot frequencies vary across a 
word?  Tracking /p, t, k, ɑ, ɛ/ through 
their slots 

 
• Note:  these are based not on the VL lexical corpus but 

on an edited version of CMU dictionary 
(www.linguistics.ucla.edu/people/hayes/BLICK/) 

 
 

[ chart next slide ] 



Voiceless stops:  
high, then low, 
then level out. 

[t] keeps rising 
because it is frequent 

in final position.

Vowels:  low, then high, then level out.
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“Leveling out” is likely to cause trouble 
 
 
• As you “move rightward,” predictions of the VL theory 

reduce to “prefer frequent phonemes” (or bigrams) — 
sequencing information will be missed. 
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A random-word test 
 
• I made 60,000 random 4-phoneme words, constrained to 

contain one stressed vowel. 

 Examples:  [ɝɝˈo͡ʊʃ], [ˈdɪrd͡ʒ], [ˈɔəvθ], [ˈt͡ʃt͡ʃkɛ], 
[ˈθo͡ʊfw] 

• I obtained VL scores for all of these words  
 CAVEAT:  I used my own replication of VL, due to 

500 word max on original version.  Replication not 
yet validated. 
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Words that the VL model scores in the top 
100 

• Unigram version: [kɛsr], [səˈnɛ], [pætt], [ˈsʊəə], [ˈpnɝə] 

• Bigram version:   [præh], [ɔʃst], [prmɛ], [dɪˈsʊ], [ŋʊst] 

• There is little question that native speakers would rate 
these words as bad.  

• About 30% of each “top 100” list has something 
comparably wrong with it. 

• Full results:   
 www.linguistics.ucla.edu/people/hayes/BLICK/ 

CompareModelsWithRandomWordTest.xls 
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The VL model evidently fails a plausible 
adequacy criterion 

 
• “Don’t assign good scores to garbage.” 
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A phonotactic model based on 
phonological principles 
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My model 
• I have named it BLICK. 

• Available in the form of a downloadable phonotactic 
probability calculator: 
 www.linguistics.ucla.edu/people/hayes/BLICK 
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Basis of BLICK 
 
• Traditional phonology, with ideas like 
 Syllabification and notions derived from it:  onsets, 

codas 
 Constraints based on natural classes defined by a 

feature system (e.g., *[+sonorant][−sonorant] in 
onset position) 

• The maxent theory of phonotactic grammars — Hayes 
and Wilson (2008) 
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A bit on the Hayes/Wilson (2008) theory 
 
• Constraints are weighted.  

• For any input word, it uses the weights and constraint 
violations to calculate a penalty score, related to 
probability. 

• Source of weights:  an algorithm finds the weights that 
best fit the frequency distribution in a lexical corpus, 
forming the most restrictive grammar. 
 I used my edited CMU corpus as the training data. 
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Where should we get our constraints 
from? 

• Previous work has used the model’s own search 
heuristics to select the constraints 
 Hayes and Wilson (2008), Daland et al. (2011), 

Hayes and White (in press) 

• This leads to problems, no time to discuss here (see 
Hayes and White, in press) 

• For now let us try a model in which constraints are 
human-selected, as a kind of baseline — can we do 
better than machine-selection? 
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Where I got my constraints from 
• Research literature (Clements and Keyser 1983, Halle 

and Mohanan 1985,  Hammond 1999, Harris 1994, 
McClelland and Vander Wyck 2006, Hayes 2011). 

• Trial and error:  Test draft grammars on synthetic lists 
(onsets, codas, whole words) 
 Keep adding plausible constraints until the system 

stops failing to penalize garbage. 

• For fine tuning (small differences among basically well-
formed words):  unigram constraints. 
 One for each vowel 
 Two for each consonant (onset, coda position) 
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For the analyst, maxent is a very helpful 
critic 

 
• Many constraints I tried were, to my surprise, weighted 

at zero — it turns out that their work is already done by 
overlapping constraints. 

• Such constraints have no effect and so I discarded them. 
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The grammar used by BLICK 
 
• … has 190 constraints 

• … is posted in annotated form at  
 www.linguistics.ucla.edu/people/hayes/BLICK/ 

 BLICKGrammarMasterFile.xls 
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Giving BLICK the same test as before 
(60K random words) 

• Words chosen at random from the top 100: 

 [ˈɑrɪt], [ˈælək], [ˈɑkʃə], [ˈvæpə], [ˈrɛpə], [ˈstɪn], [ˈkɛʃə], 
[ˈstɪm], [ˈtɪtə], [ˈɪvəm], [ˈspɛd] 

• The three worst-sounding words in the top 100 (my 
judgment):   

 [ˈplæl], [ˈfɪrt], [ˈhɪrk]   
 Full data at BLICK web page 

• I believe that in general, BLICK meets the “don’t fail to 
penalize garbage” criterion fairly well 
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Benchmarking the two models 
with experimental data 
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Seven experimental studies 
• Greenberg and Jenkins (1964), Scholes (1966), Albright 

(2009), Bailey and Hahn (2001), Shademan (2007), 
Daland et al. (2011), Hayes and White (in press) 

• All were nonce-probe rating studies, with different 
types of stimuli selected for a variety of purposes. 
 Participant data were either published or shared with 

me by the authors. 
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BLICK vs. VL Model:  correlation with 
participant ratings in seven studies 

 
chart next slide  
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Result   
 
• BLICK always has a higher correlation than VL; often 

much higher. 
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Where does the VL model do best? 
 
• Greenberg and Jenkins (1964) and Scholes (1966):  they 

used a rigid CCVC template for all stimuli. 

• Here, the left-to-right slots align with syllable structure, 
so performance goes up. 
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Model comparison:  summing up 
• Both VL and BLICK are statistical models and assign 

their parameters based on a dictionary corpus. 

• They are based on fundamentally different hypotheses 
about the phonological mechanisms involved: 
 VL:  left-to-right slot theory 
 BLICK:  constraints based on natural classes; 

syllabification 

• Since left-to-right slots are patterned only at the left edge 
(slide 23), the VL model ultimately reduces in other 
regions to “use common unigrams/bigrams” — leading to 
predictably poor performance in most ratings studies. 
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Model comparison:  summing up (cont.) 
• Maxent also has problems (details on request) — but 

these are far less obvious in the data examined so far. 

• The difference in performance of the models is directly 
traceable to the difference in the phonological theories 
they assume. 
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Moral of the story 
• It is by implementing the core ideas of the theories in 

explicit computational models that the consequences of 
these ideas become clear and testable. 

 
 

Thank you 
 
 
 
Thanks to Adam Albright, Todd Bailey and Shabnam Shademan for 

sharing their experimental data with me, and to the members of the UCLA 
Phonetics Laboratory for help given at a rehearsal version of this talk. 
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Extra slides 
 

(in case these things come up; or just saving them as notes for 
the written version) 
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Why experimentalists need 
models 
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Modeling for experimentalists 
• I wish to tread softly here because I am not one. 

• But, as a consumer of experimental work, I am very often 
frustrated by the phrase 

 
 “we would predict that …” 
 
• Where can the reader appeal, who disagrees with such 

claims?  I often am that reader. 

• Models make precise predictions and put the 
experimentalist — beneficially —out on a limb. 
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Phonotactically bad things are 
usually bad for a reason 
 
 
 



  

• This is the leading idea behind the (often despised) 
universal constraint set of OT — I think there are 
idiosyncratic constraints too, but the strong resemblance 
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Properties English shares with many other 
languages 

• Preference for well-sequenced sonority in onsets and 
codas 

• Dispreference for long consonant clusters 
• Special license for coronals  
• Preference for nasals to be homorganic with what follows 
• Dispreference for homorganic onset clusters (*[pw], *[tl]) 
• Dispreference for stressless heavy/superheavy syllables 
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of phonologies cross-linguistically deserves to be 
explained. 

 
 

Modeling vindicates particular 
phonological theories 
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Some examples from my experience— 
the Hayes/Wilson (2008) Phonotactic 
learner 

• Underspecification → needed; else model can’t cope 
with huge search space 

• Autosegmental tiers → needed; else “nonlocal” 
processes like vowel harmony can’t be learned 

• Metrical grids → needed; same for nonlocal stress 
processes 
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Evaluating BLICK 
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BLICK is not always the closest-fit model 
for any experimental dataset 

• The author’s own favorite model outperforms it, 
somewhat, in Greenberg and Jenkins (1964), Albright 
(2009), and Bailey and Hahn (2001). 
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BLICK is versatile 
• Daland et al. did a rating study of nonce words, which 

explores a broad continuum: 
  I. a range of awful words  
 [ˈrdɑsɪp], [ˈkɑsɪp] (Testing “sonority projection”; 

 Berent et al. 2007) 
  II. marginal words 
   [ˈvlɑsɪp], [ˈʃwɑsɪp]   
  III. pretty good words 
   [ˈplɑsɪp], [ˈfrɑsɪp]   

• BLICK achieves a better correlation than any of the 
models Daland et al. examined, both on these three 
populations, and overall. 
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Versatility is hard to achieve  
• Hayes and Wilson’s model does well on I, poorly on II, 

III 

• Coleman and Pierrehumbert’s model does well on I, II, 
poorly on III. 
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What are the main issues with 
maxent phonotactic grammars 
in general? 
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Naturalness and the validity of frequency-
matching as the sole weighting criterion 

• Hayes, Zuraw et al. (2009) and Hayes and White (in 
press) suggest that the constraints that have 
typological/phonetic support play a stronger role in 
phonotactic well-formedness than constraints that lack 
such support — even when the grammar gives them the 
same weight. 

• If so, what is the “bias” mechanism that enforces this? 
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Recapitulating constraint-ranking effects 
• Phonotactics has the occasional “except when” pattern 

that motivated the ranking principle of Optimality 
Theory. 
 [s] is the fricative that forms clusters, except when 

the following segment is [r]; then use [ʃ]. 
 Obstruent + obstruent and obstruent + nasal onsets 

are impossible, except when the first obstruent is [s]. 
 Sonorant + glide onsets are impossible, except when 

the glide begins the sequence [juː]. 
 Final stress is disfavored, except in monosyllables. 
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• Maxent as employed for phonotactics has had to do 
complicated “work-arounds” for these problems. 

• Might a system that chose between an output and the 
“null parse” let us get the benefits of ranking back again? 
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Granularity 
• Treiman and Kessler’s (20xx) work suggested that even 

particular VC rhymes may have to have constraints 
assigned to them. 

• But at this level, the language may be too small to sample 
the data properly (see Pierrehumbert 20xx on 
“granularity”. 

• We need to be able to distinguish meaningful zeros in the 
data frequencies from nonmeaningful ones. 
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More criticism of the VL 
model 



A relevant observation?  
• The bad words classified as good by the VL model 

violate principles well-known to phonologists, e.g. 

 
 

[ŋʊst] [ŋ] never occurs in English 
syllable onsets. 

[səˈnɛ], [prmɛ], 
[dɪˈsʊ] 

English words never end in 
stressed lax vowels. 

[ˈsʊəə] Lax vowels never occur 
prevocalically in English. 
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An example of a phenomenon 
phonologists believe will never be found 
in a real language 

• A special suffix allomorph that occurs after four-
segment stems.  

Suffix allomorphs in Fictionalese 
Stems that take -ti Stems that take -bu 
[tata-ti] [trata-bu] 
[arat-ti] [parat-bu] 
[trap-ti] [tap-bu] 
[atia-ti] [patisa-bu] 
[tarp-ti] [tar-bu] 
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Another example of implausible segment-
counting phonology 

• a rule that lengthens the second segment of the word 
 
/tata/ → [taːta] 
/trap/ → [trːap] 
/atia/ → [atːia] 
/aita/ → [aiːta] 
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McCarthy and Prince (1986) on counting 
• “Consider first the role of counting in grammar. How 

long may a count run? General considerations of 
locality, now the common currency in all areas of 
linguistic thought, suggest that the answer is probably ‘up 
to two’: a rule may fix on one specified element and 
examine a structurally adjacent element and no other.” 

 
 I personally think, “three”, but I suspect no 

phonologist would want to go much higher. 
 
“What elements may be counted? It is a commonplace of 
phonology that rules count moras (μ), syllables (σ)), or 
feet (F) but never segments.” 
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