The role of computational modeling
in the study of sound structure

Bruce Hayes
Department of Linguistics

UCLA

Conference on Laboratory Phonology
Stuttgart
27 July, 2012




Part I: general comments

Why modeling?

e From the experimental point of view: a way of finding
fully-explicit hypotheses to test

e From the theoretical point of view, particularly in
phonology: establishing contact between abstract
theories and experimental data



A fourfold program for modeling 1n
phonology

I. Corpus compilation
II. Classical analysis
III. Design of learning algorithms

[V. Paired testing of algorithms and humans



I. Compilation of a realistic data corpus

e E.g. phonetic dictionary, speech database

e Try to match the dialect/vocabulary of future
experimental participants.



II. Classical phonological analysis

e Goal 1s to avoid naive inquiry by first finding and
understanding the essential generalizations.

e Use the corpus to check them.



III. Develop a learning procedure

e This 1s implemented 1n software.

e [t incorporates the theoretical assumptions in explicit
form.

e [t digests the corpus data.

e [t creates (or, fine-tunes) a phonological grammar.



IV. Paired testing

e The grammar and experimental participants take the
same test.

e In many experiments, the stimuli are nonce forms, so we
can test how learners have generalized from the data they
encountered.



How a computational model can be used
to engage with phonological theory

e Fairly “deep” aspects of the theory can be embodied in
the software code.

e We can also provide different theoriesin the same
software.

e The software computes the concr ete consequences of
these changes for experimental data.



Modeling and experimentation can
stimulate one another

e With new models we reinter pret old data; they can shed
new light on (newly explicit) theory.

e Explicit models lead us to ponder what data would be
needed to test them

e They can help us construct the most informative nonce
forms for experiments — model-guided stimulus
design. Examples:

» Albright and Hayes (2001)
» Hayes and White (in press)



Practical consequence: sharing 1s
essential

e Sharing of models by modelersto experimentalists —
in easy-to-use, downloadable or online versions.

e Sharing of full subject data by experimentalists to
modelers —no data ever lose their usefulness.
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An example of model-sharing worth
emulating

e Vitevitch and Luce’s Phonotactic Probability
Calculator (2004)

e On line:
(www.people.ku.edu/~mvitevit/PhonoProbHome.html)

e Extensively used in experimentation (133 cites on
Google Scholar)

e Easy touse

e Embodies an explicit phonotactic theory — discussed
here.
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Part II: Case study



Topic: Gradient phonotactic well-
formedness

e Examples with English nonce words:

» [blik] (sounds great)

> [poik] (sounds odd)
» [lbapr] (sounds horrible)

e Similar terms for (roughly) the same thing:
wor dlikeness, phonotactic probability, phonotactic
grammaticality
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Two phonological theories of gradient
phonotactic well-formedness

e The theory underlying Vitevitch and Luce’s Phonotactic
Probability Calculator (abbreviation: VL)

e A second theory, combining traditional phonology +
maxent grammars.
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Vitevitch and Luce’s phonotactic theory

e Words are made of sequences of speech sounds that
occupy Sots, arranged left-to-right.

brick:

Slot 1

b

Slot 2

Slot 3

Slot 4

k

Slot 5

Slot 6

etc.

e Phonotactic well-formedness is based on the relative
frequency with which slots arefilled by different
soundsin the vocabulary of the language as a whole.
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Sample calculation

e /b/ fills the first slot about 5.2% of the time.

e A (modest) adjustment is made for token frequency of
the slot-sharing words

e Then you add thevaluesin all dots; here .052 + .090 +
023 +.041 = .206.
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Vitevitch and Luce, Version 11

e Same approach, but instead divide the word into
overlapping bigrams.

brick:

Slot 1

b+r

Slot 2

r + 1

Slot 3

1 + k

Slot 4

Slot 5

Slot 6

etc.
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Vitevitch and Luce’s claim: slot theory 1s
“neutral”

e “The method of calculating phonotactic probability that
we employed was relatively neutral with regard to
linguistic theory.” (2004, 485)
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What would phonologists think of this
claim?

e My impression 1s that the model would be considered
extremely controversial — why?
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Two principles phonologists typically
subscribe to

e Phonology doesn’t count large numbers of things
“4th X7, “5th X”” doesn’t seem to happen in phonology
— small numbers are the limat.

e Phonology doesn’t count segments.

Of the things that get counted, segments don’t seem to be
included — instead, phonology counts hierarchical units
like syllables, moras, feet.

» For clear enunciations of both principles, see
McCarthy and Prince (1986, 1).
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Diagnosing the behavior of the
VL model



How do slot frequencies vary across a
word? Tracking /p, t, k, a, €/ through
their slots

e Note: these are based not on the VL lexical corpus but
on an edited version of CMU dictionary
(www.linguistics.ucla.edu/people/hayes/BLICKY/)

[ chart next dlide ]
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“Leveling out™ 1s likely to cause trouble

e As you “move rightward,” predictions of the VL theory
reduce to “ prefer frequent phonemes’ (or bigrams) —
sequencing information will be missed.
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A random-word test

¢ | made 60,000 random 4-phoneme words, constrained to
contain one stressed vowel.

> Examples: [33'ouf], ['dird3], ['0ovO], [tftfke],
['Ooufw]
e | obtained VL scores for all of these words

» CAVEAT: Iused my own replication of VL, due to
500 word max on original version. Replication not
yet validated.
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Words that the VL model scores 1n the top
100

e Unigram version: [kesr], [so'ne], [pett], ['suos], [ pns9]

e Bigram version: [prah], [ofst], [prme], [d1i'su], [nust]

e There 1s little question that native speakers would rate
these words as bad.

e About 30% of each “top 100” list has something
comparably wrong with 1it.

e Full results:

» www.linguistics.ucla.edu/people/hayes/BLICK/
CompareModelsWithRandomWordTest.xls
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The VL model evidently fails a plausible
adequacy criterion

e “Don’t assign good scores to garbage.”
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A phonotactic model based on
phonological principles



My model
e | have named 1t BLICK.

e Available in the form of a downloadable phonotactic
probability calculator:

» www.linguistics.ucla.edu/people/hayes/BLICK
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Basis of BLICK

e Traditional phonology, with ideas like

» Syllabification and notions derived from it: onsets,
codas

» Constraintsbased on natural classes defined by a
feature system (e.g., *[+sonorant][—sonorant] in
onset position)

e The maxent theory of phonotactic grammars — Hayes
and Wilson (2008)
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A bit on the Hayes/Wilson (2008) theory

e Constraints are weighted.

e For any input word, 1t uses the weights and constraint
violations to calculate a penalty scor e, related to
probability.

e Source of weights: an algorithm finds the weights that
best fit the frequency distribution in alexical corpus,
forming the most restrictive grammar.

» I used my edited CMU corpus as the training data.
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Where should we get our constraints
from?

e Previous work has used the model’s own Sear ch
heuristics to select the constraints

» Hayes and Wilson (2008), Daland et al. (2011),
Hayes and White (in press)

e This leads to problems, no time to discuss here (see
Hayes and White, 1n press)

e For now let us try a model in which constraints are
human-selected, as a kind of baseline — can we do
better than machine-selection?
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Where I got my constraints from

e Research literature (Clements and Keyser 1983, Halle
and Mohanan 1985, Hammond 1999, Harris 1994,
McClelland and Vander Wyck 2006, Hayes 2011).

e Trial and error: Test draft grammars on synthetic lists
(onsets, codas, whole words)

» Keep adding plausible constraints until the system
stops failing to penalize garbage.

e For finetuning (small differences among basically well-
formed words): unigram constraints.

» One for each vowel
» Two for each consonant (onset, coda position)
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For the analyst, maxent 1s a very helpful
critic

e Many constraints I tried were, to my surprise, weighted
at zer 0o — 1t turns out that their work 1s already done by
overlapping constraints.

e Such constraints have no effect and so I discarded them.
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The grammar used by BLICK

e ... has 190 constraints

e ... 1s posted in annotated form at

» www.linguistics.ucla.edu/people/hayes/BLICK/
BLICK GrammarMasterFile.xls
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Giving BLICK the same test as before
(60K random words)

e Words chosen at random from the top 100:

> ['artt], ['elok], ['akfa], ['vepa], ['repa], ['stin], ['kefa],
['stim], ['tita], ['tvom], ['sped]

e The three wor st-sounding wordsin thetop 100 (my
judgment):

> ['plel], ['firt], ['hirk]
» Full data at BLICK web page

e | believe that in general, BLICK meets the “don’t fail to
penalize garbage” criterion fairly well
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Benchmarking the two models
with experimental data
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Seven experimental studies

e Greenberg and Jenkins (1964), Scholes (1966), Albright
(2009), Bailey and Hahn (2001), Shademan (2007),
Daland et al. (2011), Hayes and White (in press)

e All were nonce-probe rating studies, with different
types of stimuli selected for a variety of purposes.

» Participant data were either published or shared with
me by the authors.
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BLICK vs. VL Model: correlation with
participant ratings in seven studies

chart next dide
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Result

e BLICK always has a higher correlation than VL; often
much higher.
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Where does the VL. model do best?

e Greenberg and Jenkins (1964) and Scholes (1966): they
used arigid CCVC template for all stimuli.

e Here, the left-to-right slots align with syllable structure,
so performance goes up.
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Model comparison: summing up

e Both VL and BLICK are statistical models and assign
their parameters based on a dictionary cor pus.

e They are based on fundamentally different hypotheses
about the phonological mechanisms involved:

» VL: left-to-right dlot theory

» BLICK: constraintsbased on natural classes;
syllabification

e Since left-to-right slots are patterned only at the left edge
(slide 23), the VL model ultimately reduces in other
regions to ‘“‘use common unigrams/bigrams” — leading to
predictably poor performance in most ratings studies.
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Model comparison: summing up (cont.)

e Maxent also has problems (details on request) — but
these are far less obvious 1n the data examined so far.

e The difference in performance of the models 1s directly
traceable to the difference in the phonological theories
they assume.

44



Moral of the story

e It is by Implementing the coreideas of thetheoriesin
explicit computational models that the consequences of
these 1deas become clear and testable.

Thank you

Thanks to Adam Albright, Todd Bailey and Shabnam Shademan for
sharing their experimental data with me, and to the members of the UCLA
Phonetics Laboratory for help given at a rehearsal version of this talk.
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Extra slides

(in case these things come up; or just saving them as notes for
the written version)
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Why experimentalists need
models



Modeling for experimentalists

e | wish to tread softly here because I am not one.

e But, as a consumer of experimental work, I am very often
frustrated by the phrase

“we would predict that ...”

e Where can the reader appeal, who disagrees with such
claims? I often am that reader.

e Models make precise predictions and put the
experimentalist — beneficially —out on a limb.
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Phonotactically bad things are
usually bad for a reason



Properties English shares with many other
languages

e Preference for well-sequenced sonority 1n onsets and
codas

e Dispreference for long consonant clusters

e Special license for coronals

e Preference for nasals to be homorganic with what follows
e Dispreference for homorganic onset clusters (*[pw], *[tl])
e Dispreference for stressless heavy/superheavy syllables

e This 1s the leading 1dea behind the (often despised)
universal constraint set of OT — I think there are

1diosyncratic constraints too, but the strong resemblance
56




of phonologies cross-linguistically deserves to be
explained.

Modeling vindicates particular
phonological theories
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Some examples from my experience—
the Hayes/Wilson (2008) Phonotactic
learner

e Under specification — needed; else model can’t cope
with huge search space

e Autosegmental tiers — needed; else “nonlocal”
processes like vowel harmony can’t be learned

e Metrical grids — needed; same for nonlocal stress
processes
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Evaluating BLICK



BLICK 1s not always the closest-fit model
for any experimental dataset

e The author’s own favorite model outperforms it,
somewhat, in Greenberg and Jenkins (1964), Albright
(2009), and Bailey and Hahn (2001).
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BLICK 1s versatile

e Daland et al. did a rating study of nonce words, which
explores a broad continuum:

I. a range of awful words

['rdasip], ['kasip] (Testing “sonority projection”;

Berent et al. 2007)
II. marginal words

['Vlasip], ['fwasip]
III. pretty good words

['plasip], ['frasip]

e BLICK achieves a better correlation than any of the
models Daland et al. examined, both on these three

populations, and overall.
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Versatility 1s hard to achieve

e Hayes and Wilson’s model does well on I, poorly on II,
111

e Coleman and Pierrehumbert’s model does well on 1, 1I,
poorly on III.
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What are the main 1ssues with
maxent phonotactic grammars
1n general?
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Naturalness and the validity of frequency-
matching as the sole weighting criterion

e Hayes, Zuraw et al. (2009) and Hayes and White (in
press) suggest that the constraints that have
typological/phonetic support play a stronger role in
phonotactic well-formedness than constraints that lack

such support — even when the grammar gives them the
same weight.

e If so, what 1s the “bias” mechanism that enforces this?
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Recapitulating constraint-ranking effects

e Phonotactics has the occasional “except when” pattern
that motivated the ranking principle of Optimality
Theory.

>

>

[s] 1s the fricative that forms clusters, except when
the following segment is [r]; then use [{].

Obstruent + obstruent and obstruent + nasal onsets
are impossible, except when the first obstruent 1s [s].

Sonorant + glide onsets are impossible, except when
the glide begins the sequence [ju:].

Final stress 1s disfavored, except in monosyllables.
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e Maxent as employed for phonotactics has had to do
complicated “work-arounds” for these problems.

e Might a system that chose between an output and the
“null parse” let us get the benefits of ranking back again?
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Granularity

e Treiman and Kessler’s (20xx) work suggested that even
particular VC rhymes may have to have constraints
assigned to them.

e But at this level, the language may be too small to sample
the data properly (see Pierrechumbert 20xx on
“granularity”.

e We need to be able to distinguish meaningful zeros 1n the
data frequencies from nonmeaningful ones.
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More criticism of the VL
model



A relevant observation?

e The bad words classified as good by the VL model
violate principles well-known to phonologists, e.g.

[nust]

[n] never occurs 1n English
syllable onsets.

English words never end 1n

sa'ne], [prme],

o stressed lax vowels.
dr'su]

'5U09] Lax vowels never occur

prevocalically in English.
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An example of a phenomenon
phonologists believe will never be found
in a real language

e A special suffix allomorph that occurs after four -
segment stems.

Suffix allomor phsin Fictionalese

Sems that take -ti | Sems that take -bu
tata-ti] ‘trata-bu]

arat-t1] ‘parat-bu]

trap-ti] ‘tap-bu]

at1a-ti] ‘patisa-bu]

tarp-ti] tar-bu]




Another example of implausible segment-
counting phonology

¢ arule that lengthens the second segment of the word

/tata/ — [ta:ta]
/trap/ — [triap]
/atia/ — [atua]
/aita/ — [anta]
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McCarthy and Prince (1986) on counting

e “Consider first the role of counting in grammar. How
long may a count run? General considerations of
locality, now the common currency in all areas of
linguistic thought, suggest that the answer 1s probably ‘up
to two’: a rule may fix on one specified element and
examine a structurally adjacent element and no other.”

» I personally think, “three”, but I suspect no
phonologist would want to go much higher.

“What elements may be counted? It 1s a commonplace of
phonology that rules count moras (u), syllables (c)), or
feet (F) but never segments.”
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