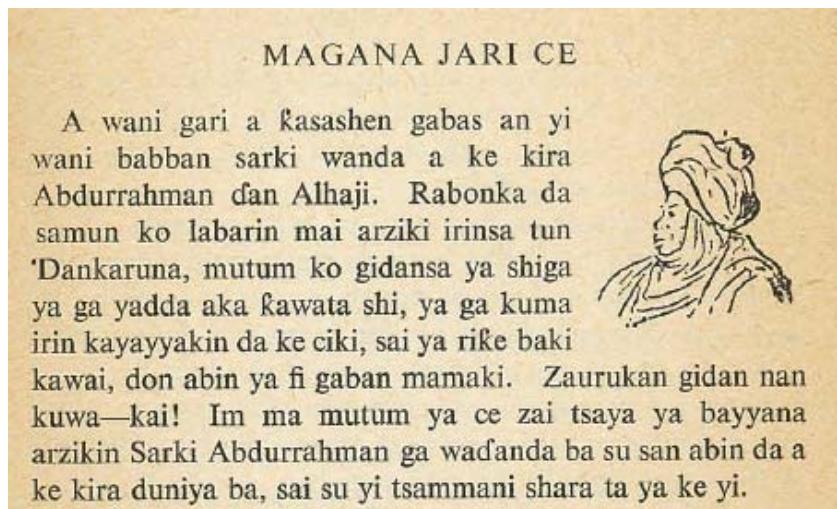


Class 9: Singing and the Two vs. Three Level Question

1. Readings and assignments

- Continue to talk with us.
 - Read Hayes, "Textsetting as constraint conflict", on course web page


A BRIEF METHODOLOGICAL INTERLUDE: ESTABLISHING THE RAJAZ BRIDGE WITH THE RUSSIAN METHOD AND THE CHI-SQUARE TEST

2. The question at hand

- Many Hausa poems have strikingly few word boundaries between the last two syllables — perhaps a “final foot bridge”.
 - Cf. Finnish *Kalevala* meter,¹ Serbo-Croatian decasyllable
- Russ had asked: what if Hausa syntax and lexicon naturally conspire to favor this pattern?

3. Applying the Russian method

- Russ grabbed some appropriate Hausa prose.

- He coded the break between a set of two-syllable sequences placed before punctuation

¹ Kiparsky, Paul (1968) "[Metrics and morphophonemics in the *Kalevala*](#)," in Charles Gribble, (ed.), *Studies Presented to Roman Jakobson by his Students*. Cambridge, MA: Slavica, 1967.
<http://www.linguistics.ucla.edu/people/hayes/251metrics/papers/Kiparsky1968Kalevala.pdf>

➤ 1 (same simplex word)

dxan Alhaji.
 Dxankaruna,
 da ke ciki,
 rikxe baki kawai,
 gaban mamaki.

➤ 2 (enclitic grammatical word)

kxawataa shi,
 duniya ba,
 gare shi,
 kawo shi ba,

➤ 3 (separate full content word)

kura—kai!
 ya ke yi.
 ba shi da waa.
 ya ba ya ci.
 abin da ya ke so.

4. Counting them up

1	75
2	18
3+	7
total	100

5. Comparison verse corpus: the final bridge in Tutocin Shehu (rajaz)

1	360
2	15
3+	2
total	377

6. A simple way to test this situation

- For simplicity, glom together the 2 and 3+ categories and juxtapose the two cases.

	Tutocin Shehu	prose sample
1	360	75
2+	17	25

- Now we have a 2 x 2 array — called a **contingency table** — to which we can apply the *chi square* test to get a p-value.
- I have set up a bit of Excel stuff to do this, which you can download from the course web site. (just copy the cells to the right of your 2 x 2 array; it will display p)
- Result:

	Verse	Prose	Expected 1	Exp. 2	Exp. 3	Exp. 4	Chi-square	p	Legit?
1	360	75	343.80	91.195	33.195	8.805	41.327	1.29E-10	ok
2+	17	25							

- A better test (not used much in the past due to high computational requirements) is **Fisher's exact test**, which you can run at this web site: <http://www.socscistatistics.com/tests/fisher/default2.aspx>. Same result (highly significant).

7. Backup procedure

- Recall that Bruce's maxentification of the junctures in Tutocin Shehu found a positive weight for the bridge constraint, which passed the likelihood ratio test.

8. Two conceptually different tests; same conclusion

- Maxent cum GEN: final two syllables of the line are 'bridgy' when compared with an **artificial population** in which juncture distribution is totally random.
- Russian method: final two syllables of the line are 'bridgy' when compared with a **representative sample of the language** as a whole.
- For a paper (slides only) finding and pondering the *differences* between maxent-cum-GEN and Russian method, see my <http://www.linguistics.ucla.edu/people/hayes/Papers/HayesM90TalkHandout.pdf>; you can watch me give the talk on YouTube! <https://www.youtube.com/watch?v=IRRyxW6xPeg>

SUNG AND CHANTED VERSE

9. Singing/chanting is probably the norm for poetry

- I would be intrigued to find a spoken verse form that had not arisen among literate people.
- ... for that matter, if you listen to Yeats, T. S. Eliot, Dylan Thomas, Robert Frost, Marianne Moore, on YouTube, they do tend toward singing, intonationally.

10. English singing/chanting: the grid has more positions than are ever filled

... at least superficially

11. Transcription is a quasi-musical skill

- I recommend finding the strongest beats first, then working down.
- For difficult genres like rap this is a colossally difficult skill; traditional folk songs aren't as hard.
- Examples for your practice (I will chant them for you).
 - Do these in pencil, since I might try some variants.

As I looked over the castle wall

A- mong the leaves so green, O.

One May mor- ning so ear- ly

Low so low and so lone- ly

To	take	an	English	frigate	neat	and	handy	O							
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
		X				X				X				X	
X		X		X		X		X		X		X		X	
X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X

I	wooed	her	in	the	sum-	mer	time								
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
		X				X				X				X	
X		X		X		X		X		X		X		X	
X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X

THE TWO- VS. THREE LEVEL PROBLEM

12. The levels

- I: The phonological string (not controversial)
- III: The sung material, gridded with a (roughly) isochronous Lerdahl-Jackendoff grid.
- II: The phonological material treated as meter
 - Here, the grid is a theoretical entity, meant to make sense of the legal properties of lines.

13. History (from my point of view)

- Hayes and MacEachern (1998, *Language*) lay out claimed laws concerning the distribution of empty grid slots at the ends of lines in English folk song quatrains.
- Kiparsky (2005, 2006)² suggests their analysis is too complex: if you first analyze the poems as being in (e.g.) iambic tetrameter, then put them to music, things are simpler.

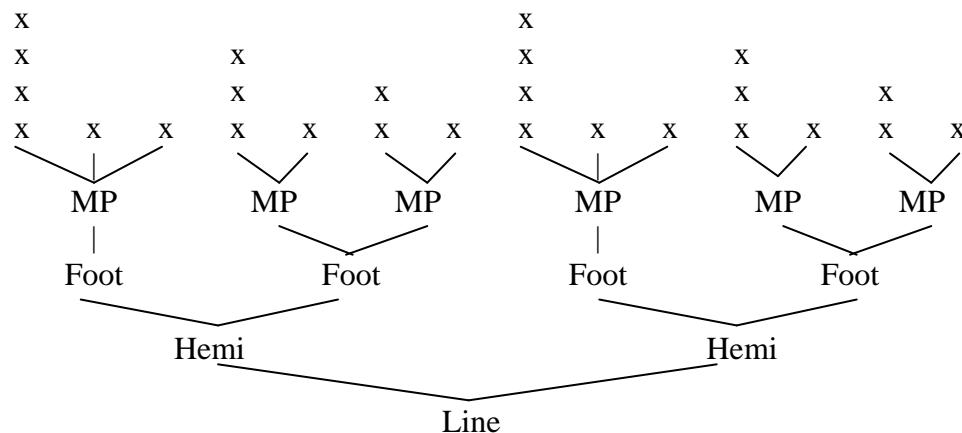
14. Overview: How are three levels justified?

• Blatant startovers

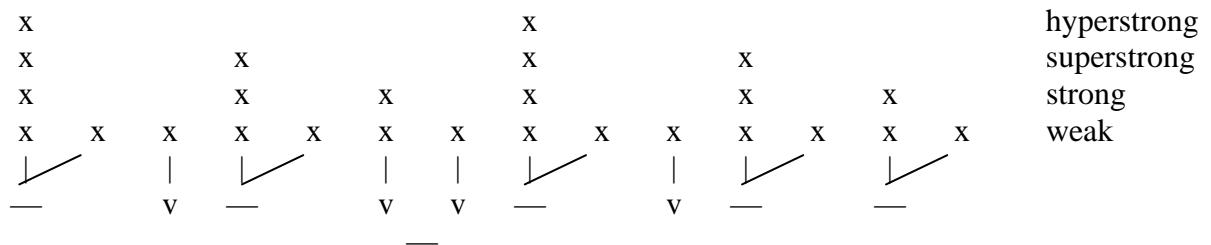
- II yields a text, whose regularities are the product of Grammar II.
- The text is treated *de novo* at III, simply as phonological material.
- I.e. the *linkage to the grid at II* is ignored.

² Kiparsky, Paul (2006) "[A modular metrics for folk verse](#)," in B. Elan Dresher and Nila Friedberg, *Formal Approaches to Poetry: Recent Developments in Metrics*.

Kiparsky, Paul (2005) (but probably written after Kiparsky 2006) "[Where Stochastic OT fails: a discrete model of metrical variation](#)," Berkeley Linguistics Society proceedings, 2005.


Both on line at an old site: <http://www.linguistics.ucla.edu/people/hayes/251metrics/>

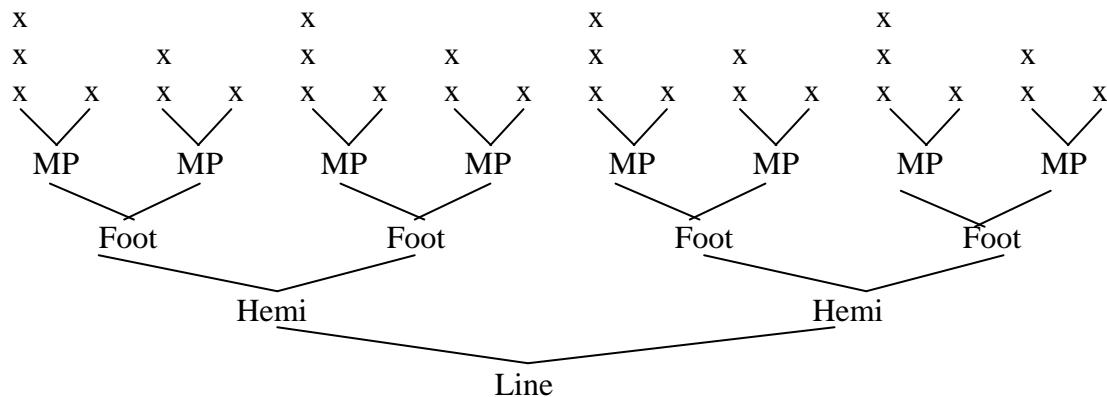
- **Remote influence** — III has its own rules, but there are subtle influences of II; you must know the linkage to the grid at II in order to calculate III.
- **It just doesn't matter:** the calculations of III and II can both proceed from phonology and are essentially identical (if all cases were like this, we could have a pure two-level theory)


15. A blatant “startover” case

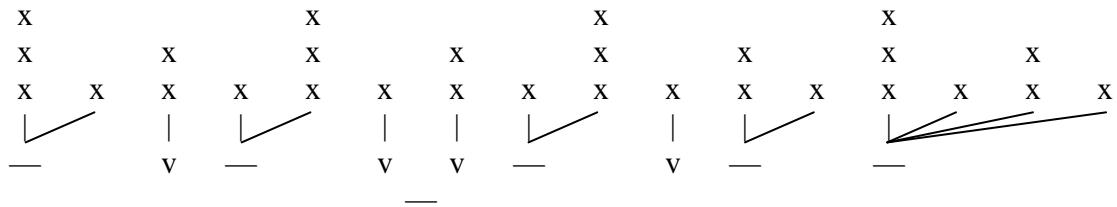
- Fauziyya Sarki Abubakar (the singer whose picture and YouTube link appear on the our course home page) sings a famous long Hausa poem in rajaz — totally obliterating the best-motivated grid for explaining the meter.

- Full structure (bracketing and grid) of the meter:

- The standard linking of heavy and light syllables to the grid:

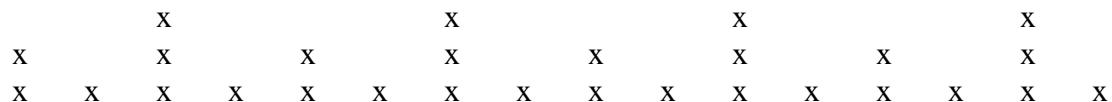

16. Doing the Level II metrics of the ramal

- (15) is a “tense” Lerdahl-Jackendovian grid, with $3 + 2 + 2$ and a perhaps-dubious top row.
- But (15) is not a grid for Martians!
 - essentially perfect symmetry of Hemistichs
 - only 2’s and 3’s are used.
- Constraints defining this complex meter:
 - LINES ARE BINARY


- HEMISTICHES ARE BINARY
- STRONG FEET CONSIST OF A TERNARY MP
- FEET ARE BINARY
- FOOT-INITIAL MP'S ARE TERNARY (weird contextual constraint, Bulgarian in character)
- MP'S ARE BINARY
- HEMISTICHES ARE LEFT-STRONG
- FEET ARE LEFT-STRONG
- MP'S ARE LEFT-STRONG (undominated in UM, per Prince)
- Correspondence constraints:
 - STRETCH and SQUEEZE for moras (perfect)
 - SUPERSTRONG IS LONG (perfect)
 - *FINAL SHORT (forcing the heavy option in final position)
 - maybe something to govern statistical tendencies in the one spot where vv and - alternate; LONG IS STRONG, *STRUC_o

17. Doing the sung rhythm

- Grid is as unmarked as it could possibly be, with nothing but binary and symmetry



- Assignment of syllables *assumes a composed text* and beyond this respects only three properties.
 - *SQUEEZE MORA
 - *STRETCH NONFINAL MORA
 - *EMPTY X

18. How can “utter irrelevance” of Level II be available? Trivial case

- This will happen when the song can be, and is, “sung straight” — poetic and sung grids are identical, and use the same constraints.
- I think this actually happens a lot with English folk song.
 - The grid is dipodic; iambic high and trochaic low (per Prince on MP’s)

