

Class 7, 4/20/15: Grids and Quantitative Meter; Rajaz Analysis

1. Readings

Prince reading, on web site

GRIDS AND QUANTITATIVE METER

2. The grid-based theory of quantitative meter

- Origin: Prince (1989), though he uses SW trees rather than grids.
- Unidentified (yet) work by Russ may be the first to use grids.

3. Underlying question

- Can the theory of rhythm (e.g. as worked out by Lerdahl and Jackendoff) give us help in understanding quantitative meters like Hausa?
 - This is a slightly more “extended” application than application to stress-based meters.

4. Key ingredient I: moraic theory

- Heavy syllables are more than just bigger syllables; they are the theoretical equivalent of two light syllables.
- The characteristic equivalence of - with vv is part of the evidence, but phonology tells us much the same.

5. Key ingredient II: prominence alignment

- In stress systems, both WEIGHT TO STRESS and STRESS TO WEIGHT play important roles.
- These are part of the overall system of **prominence alignment** laid out in Prince and Smolensky (1993).
- You pick two scales, and a natural direction of alignment, and you can say stuff like
 - Anything with less/more than x on Scale I must have less/more than y on Scale II.
 - All values of x and y produce sensible constraints.
- Prince and Smolensky’s *paradebeispiel* is sonority and syllabicity (in Berber)
- Stress and weight would be another example.
- The idea here is to use grid height in a Lerdahl/Jackendovian grid as the basis for prominence alignment.

6. Fleshing this out

- Label the layers of the Lerdahl/Jackendovian grid from the bottom up:
 - weak
 - strong
 - superstrong
 - hyperstrong
- Two forms of prominence alignment:
 - (SUPER/HYPER)STRONG IS LONG
 - LONG IS (SUPER/HYPER)STRONG

7. Defining ‘is strong’ more precisely

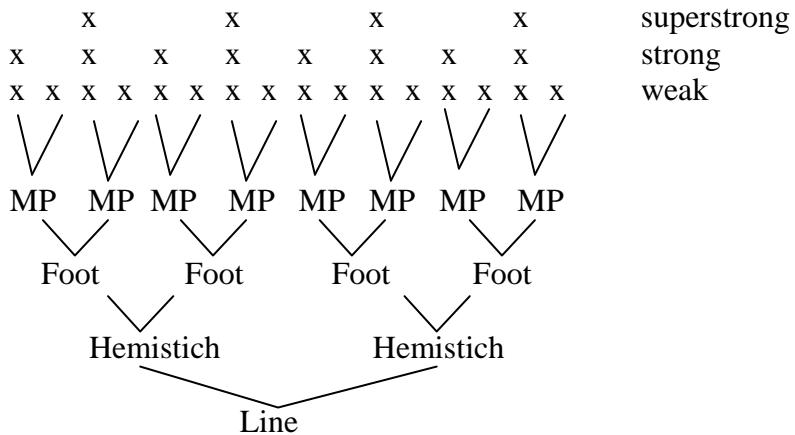
- = “is aligned with a grid column that has an x on the Strong layer”
- Meaning: anything that is Superstrong is also Strong; and anything that is Hyperstrong is also Superstrong and Strong

8. What can go into a quantitative metrical analysis under this approach?

- The spacings of each layer on the grid (2 or 3)
- Something to regular starting or stopping points
 - we need to think about this
 - This could probably be based on the bracketed domains that go with grids
 - probably integral numbers of units, with empty positions
- A set of weighted constraints from the family given in (6).

WORKING OUT A SIMPLE CASE: HAUSA MUTADARIK

9. Basics


- Recall that this is v v - / v v - / v v - / v v -, with - substitutable for v v.

10. The constraints we had before (in model evaluation lecture)

- LINES HAVE FOUR FEET
- FEET ARE TETRAPOSITIONAL
- ONE MORA PER POSITION
- LAST TWO POSITIONS OF FOOT MUST CORRESPOND TO A HEAVY

11. Being more explicit

- The grid is binary at all levels; and going upward is trochaic, then iambic (and then it doesn't matter).¹
- See Prince (readings) for “metrical position”
 - some kind of rather low-level position, though not terminal
 - Universally, Prince suggests, the MP is trochaic.
- Labeling of grid levels is not theoretical; just a terminology for bottom-up numbering

12. Pattern constraints for the mutadarik (infinite weight)

LINES ARE BINARY

HEMISTICHES ARE BINARY

FEET ARE BINARY

METRICAL POSITIONS ARE BINARY

Prominence constraints:

ALIGN(head x, MP, Left) = MP's are left-strong (universally? Prince)
 ALIGN(head x, Foot, Right) = Feet are right-strong
 can't tell about other such constraints

13. The main quantitative constraints for mutadarik

- Two constraints to regulate moras-to-grid slots, one-to-one
 - STRETCH: *mora in two slots
 - SQUEEZE: *extra mora in a slot
- SUPERSTRONG-IS-LONG

¹ Prince (readings) believes in “labeling harmony” across levels and bravely deduces predictions therefrom; I think the generalization is just not true across metrical traditions.

14. Anything else?

- This only depends on whether vv - or - - is favored; some sort of silly constraint penalizing heavies, or lights, depending.
 - If v v is favored, this could be due to LONG IS STRONG.
- This didn't test significant when we tried it on data; maxent equality worked fine.
- N.B. there is also the final - - clausula, not yet taken into account.

15. Being explicit about **STRONG IS LONG**

- It is violated whenever there is a strong grid mark that does not *initiate an affiliation* with a heavy syllable.
- We will later have to refine this when we deal with syncopation (syncopated mutadarik).

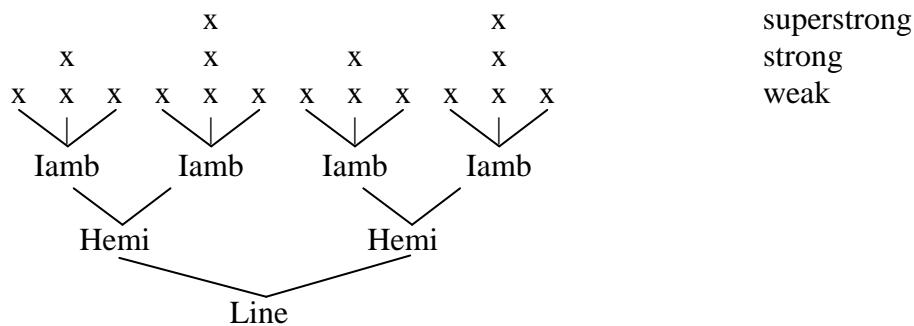
16. Where this is all going

- Following Prince (readings), trying to have some kind of principled limitation on the systems of quantitative meters.
- Update: we
 - plug into the Lerdahl/Jackendoff principles of grids
 - plug into the Prince/Smolensky system of prominence alignment.
 - abandon Prince's untenable hypothesis of vertical labeling harmony

BACK TO THE RAJAZ

17. Generalization for Rajaz: across the board preference for $v - v -$

- We assume that the most frequent patterns violate the fewest and weakest constraints (Halle and Keyser 1971:xxx; Hayes Wilson and Shisko 2012:xxx).
- So v - v - somehow must reflect the simplest possibility.
- Let's also assume that some kind of “as if” principle folds in the - - v - cases — making the pattern even more frequent (almost half of all feet)


18. Our grid for the rajaz diameter

- If the v vs. $-$ difference for the default foot v $-$ is going to be due to the principles above, then the grid will have to be basically amphibrachic, as follows:

Then, the obligatory - at the end of *all* feet reflects SUPERSTRONG IS LONG
The heavy found in the predominant foot type v - v - reflects STRONG IS LONG.

19. What is the tree?

- Prince would have us break down the ternary amphibrachs into a right-branching structure.
- No support for this in Hausa, but no evidence against it either.
- The adherence to the Lerdahl-Jackendovian numbers two and three forces us to have higher-level structure, with hemistichs.

20. The data we are working with

- These were all selected by Russ as a representative sample of *rajaz*
- 11 poems by 8 poets
- 2046 lines total
- These are notated by Russ for vowel length (not spelled, argh), foot division, and juncture.

21. A Rajaz stanza

v — v — — v v —
 A yad- da rai- naa ya fi soo,
 v — v — — v v —
 A mai- ma- kon 'yan ka- ma- shoo,
 v — v — — v v —
 Ya-bon Ma- 'ai- kii na fi soo,
 v — v — — v v —
 Na baa da kwa- zoo na fi soo,
 v — v — — v v —
 Ya-bon- sa baa Ma- gaa-ji baa.

— = heavy syllable
 v = light syllable

(Akilu Aliyu, "Kokon Mabarata", verse 4)

'In the way that my life prefers,
 Instead of (being) a middle man,
 Praise of the profit is what I prefer,
 That I be diligent is what I prefer,
 In praising him, not Magaji.'

22. Descriptive generalizations involving syllable quantity

- As Russ covered last time, there seem to be **five major types** of feet.
- Thus:

v — v —
 — — v —
 v v — —
 — v v —
 — — —

- In addition, there is also a certain number of **minor feet**.
 - = feet that are rare; typically about 5% of the feet in a poem.
 - We won't try to analyze the minor feet here.

23. All foot types in corpus sorted by descending frequency

v - v -	1362	- v - -	6
---	871	- v v v	5
- v v -	687	v v - v -	5
- - v -	600	- - - -	2
v v - -	417	v v - v	2
v - v v	35	- v - v -	1
v v v -	24	- v v - -	1
v - -	19	- v v v v v	1
v v v v -	19	v v -	1
v - - -	16	v v v - -	1
- v -	10	v v v v -	1
- - v v	6	v v v v v v	1

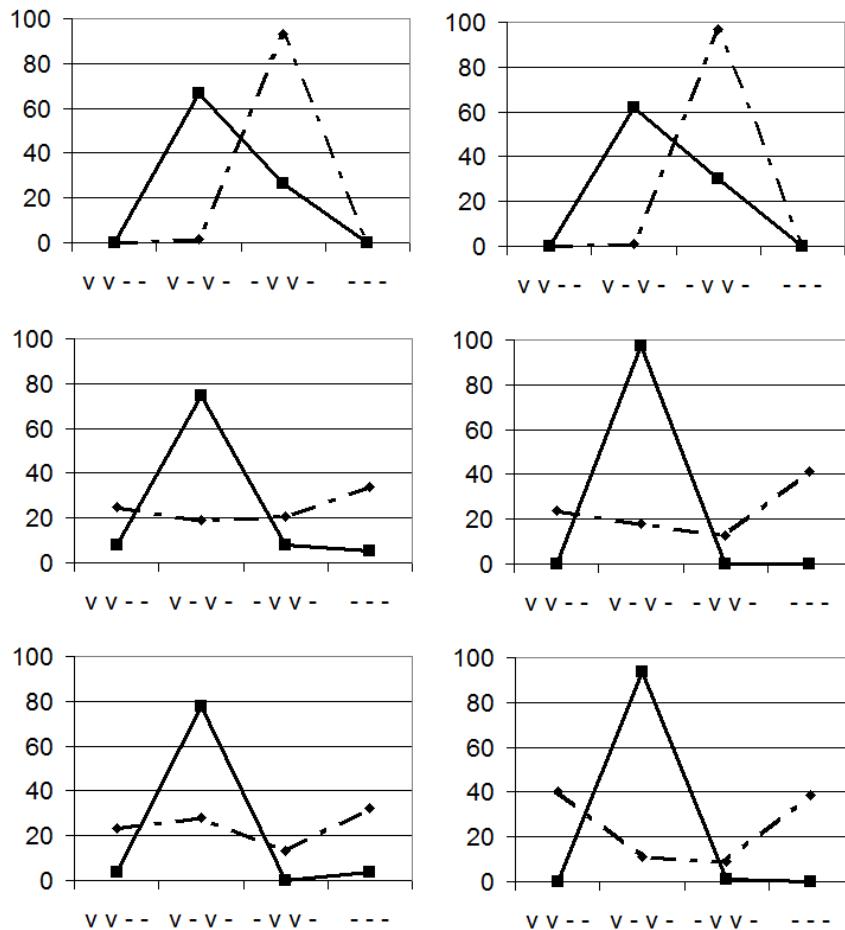
24. Qualitative characterizations of the distributions of the five major foot types

- v - v -
 1. It is welcome everywhere, prevalent *except* in poems where some other foot type grabs all the cases.
 2. Where v - v - doesn't win, it usually comes in second.
- - - v -
 3. It is always *despised* as Foot 2 of any line.
 4. It is "tied to" v - v -: where - - v - is common, so is v - v -.
- v v -
 5. Always despised as Foot 1
 6. In some poems frequent or even dominant as Foot 2
 7. Tied to - - -: where v v - - is common, so is - - -, usually more so.

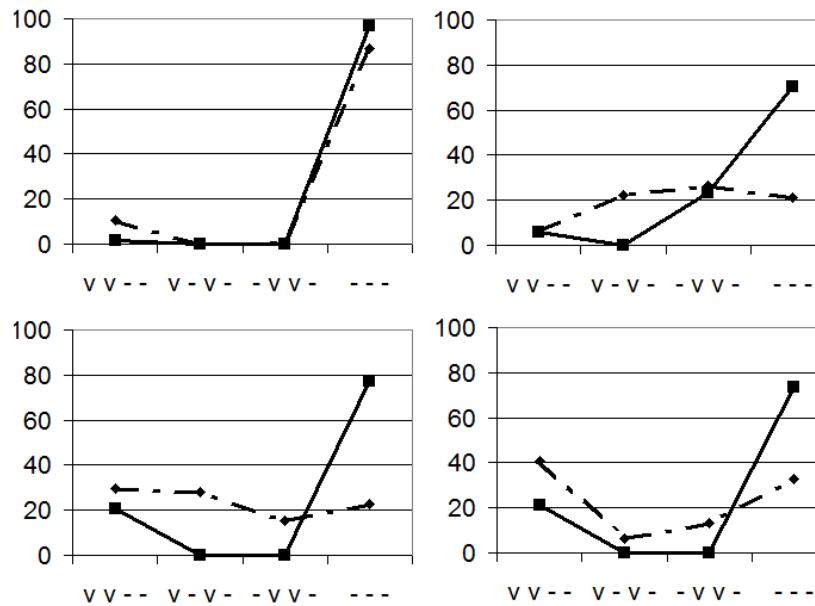
- - v v -
 - 8. Seldom actually despised (at worst, shares equally with other nondominant types)
 - 9. In a few poems favored as Foot 2
- - - -
 - 10. In some poems despised as Foot 1
 - 11. In several poems highly favored as Foot 2

25. Looking ahead

We need constraints that have these properties:


- Across the board preference
 - Fundamentally favor v - v - across the board (see 1-2 above)
- The “tied-to” phenomenon
 - Favor - - v -, but only in contexts that also favor v - v - (see 4 above)
 - Favor v v - - only where - - - is also favored (7 above)
- Contextual preferences:
 - Disfavor v v - - in Foot 1 (5 above)
 - Disfavor - - v - in Foot 2 (3 above)
 - Mildly disfavor - - - in Foot 1 (10 above)
 - Boost for any of - v v -, v v - -, - - - in Foot 2 (6, 9, and 11 above)

26. The special status of stanza-final lines: “boosting”


- We think stanza-final lines are like regular lines, except that two foot types can be “boosted” when they are the very last foot of the stanza: v - v - and - - -

27. Looking the cases of “boosting” I: boosting to v - v -

- One diagram per poem
- Dotted = final foot of non-stanza-final lines
- Solid = final foot of stanza-final lines
- Degree of boosting varies from slight to overwhelming

28. Looking the cases of “boosting” II: boosting to - - -

29. Looking ahead to the analysis

- Boosting, particularly partial boosting, can be regarded as the effect of constraint interaction, with an added constraint applicable only in stanza-final position.

30. Desiderata for an analysis

- Get the qualitative generalizations in (22).
- Where possible, root the constraints in principles of metrics that have some typological validity.
- Put it all together to get good frequency matches to the observed counts in all 11 poems.

AS IF" PRINCIPLES

31. What they are

- “Fictional” treatment of quantities as other than they are phonologically

32. Anceps

- Treat line final syllables as heavy no matter what.

33. Motivation for Anceps

- It seems to be a universal, or near-universal, of quantitative metrics.
 - Persian, Arabic, Sanskrit, Latin, Greek, other verse forms of Hausa never regulate the quantity of the last syllable of a line.

- It perhaps could be related to “interval theory” of Steriade (xxx ref.): no following CV transition to provide sharp timing cue.
- We don’t know why the neutralized quantity is treated generally as heavy.

34. Initial squeezing

- You (may not/may/prefer to) treat an initial syllable as light.

35. An analog for Initial Squeezing

- Persian meter (Elwell-Sutton 1973:128) allows, indeed more or less prefers this:

- v - - / v v - - / v v - - / v v -

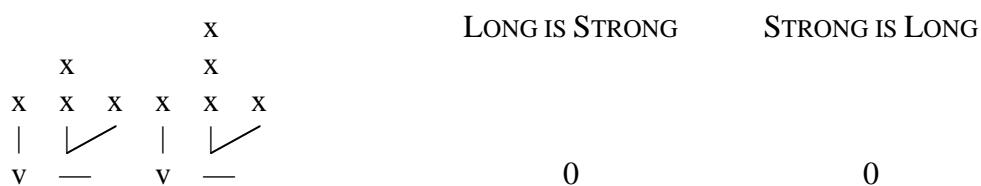
for basic

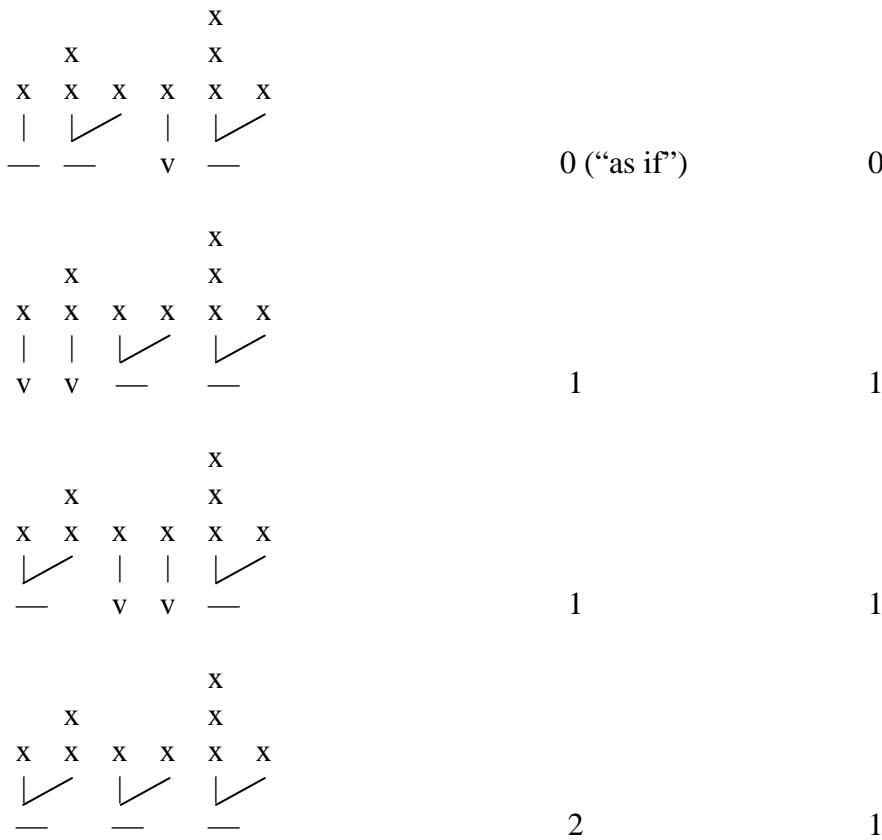
v v - - / v v - - / v v - - / v v -

and similarly for other meters starting v v -

- Hausa “false mutadarik” is quite similar

36. The main result of initial squeezing in the Hausa Rajaz


- - - v - (the only heptamoraic foot), gets allowed in, since it is honorarily v - v -


37. Initial squeezing manifests itself differently in the Hausa Rajaz than in Persian

- In Hausa Rajaz, if you squeeze - v - -, it counts as v v - -, which is rare in any event in line-initial position.
- From which it follows that - v - - is also rare.
➤ See (23): only 6/2000 lines

CONSTRAINT VIOLATIONS

38. Violations of LONG IS STRONG and STRONG IS LONG in the five basic types

39. Empirical consequences of prominence alignment

- Every major foot ends in -; due to SUPERSTRONG IS LONG.
- The across-the-board preference for v - v - and its Foot1 “as if” partner - - v -.
- In an enhanced version of STRONG IS LONG for stanza-final feet, the “boosting” of v - v - seen in (27).
- Note that - - - is disfavored by LONG IS STRONG
 - It is the only foot that has a bias in both Foot1 (bad) and Foot 2 (good); see below.

40. Accounting for the overall limitation to five foot types

- *STRETCH and *SQUEEZE force hexamoraic feet, excepting in initial position with “as if” squeezing.
- SUPERSTRONG IS LONG forces a - at the end of a foot.
- This reduces the logical possibilities to:

<i>Unsquoze</i>	<i>Squoze</i>
v v - -	- - v -
- v - v	- v - -
- v v -	- v v v -
- - -	
v v v v -	

- Of these, v v v v - occurs occasionally (0.5% of all feet in corpus)
 - We penalize it with a ban on *v v v, common in quantitative systems.
- - v - - is rare (0.1%) since you could only get it by squeezing initial -, which runs you afoul of the ban on initial vv.
- - v v v - has both problems and is unattested.

THE QUANTITATIVE CLAUSULA IN THE RAJAZ

41. Lines like to end in lots of -

- Persian ramal (Elwell Sutton 1976): v v realized as -, sometimes

v v - - v v - - v v - - v v -
 0 3 3.5 35%

- Perhaps also Hausa mutadarik

42. There are perhaps degrees

Whatever violates

DON'T NOT END IN - - -

also violates

DON'T NOT END IN - -.

- Hence, v v - - weakly echos the distribution of - - - at the end of lines (item 7 in (24) above).

ANALYSIS IV: STUPID ARBITRARY STUFF WE CAN'T EXPLAIN

43. *Initial vv

- This is weird typologically and indeed Hausa has other meters that happily start with vv.

44. Preference in some poems for final - v v -

- See tendency 9 under (24) above.

SETTING UP THE GRAMMAR

45. GEN

- We included

- all feet of 2, 3, 4, and 5 syllables with all possible quantities
- the two hexamoraic 6 syllable feet (v v v v v v, - v v v v v with initial squeezing)
- This is 62 candidates
- And we do this four times (two foot positions in line, stanza final/nonfinal)

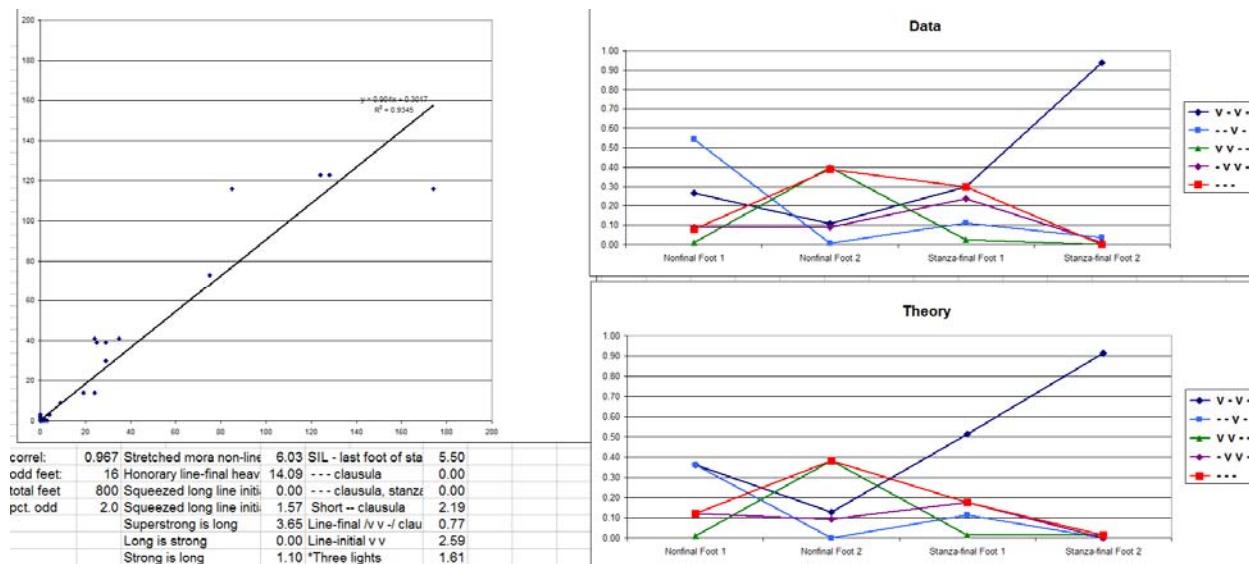
46. The final constraint set

- Note that some constraints have positional clones, reflecting Kiparskyan “beginnings free, endings strict”.

*STRETCHED	Don't map a mora to two grid positions
*SQUEEZED	Don't assign more than one mora to grid position.
SQUEEZED LONG LINE INITIAL	Don't ² use the “as if” clause for initial
SQUEEZED LONG LINE INITIAL — STANZA-FINAL LINES	ditto, but in stanza-final lines (needed?)
SUPERSTRONG IS LONG	see above
STRONG IS LONG	see above
LONG IS STRONG	see above
STRONG IS LONG - LAST FOOT OF STANZA	for v - v - “boosting”
DON'T NOT END IN --	end a line in at least 3 -
DON'T NOT END IN ---, STANZA FINAL	ditto, but in stanza-final line — “boosting”
DON'T NOT END IN ---	end a line in at least 3 -
FAVOR LINE-FINAL /V V -/	stupid arbitrary constraint
DISFAVOR LINE-INITIAL /V V/	stupid arbitrary constraint
*THREE LIGHTS	see above

CRUNCHING IT ALL OUT

47. Setting the weights


- We used the “Solver”.

48. Results

- Analysis matches the data (all 11 poems) rather closely.
 - It darn well better, because the model has a lot of parameters!
- Frequencies: correlation of predicted and observed is never less than $r = .967$ and in some cases near $r = .99$.
- Here are graphs for the *worst* case:

² Or “do”, in some poems — unlike all the others we let this one go negative.

- Good old generative success: no point on the axes other than at the origin.
- Frequency-matching success: all the points are near the $y = x$ symmetry line.
- We aren't crowding since the constraint set is so large relative to the data.

49. How do the constraint weights vary?

- Very roughly:
 - The “constitutive” constraints like *STRETCH and *SQUEEZE and SUPERSTRONG IS LONG are weighted high in every poem.
 - Little detail constraints, like those favoring a particular foot in a particular location, vary a lot in their weight.
 - It’s not as clean as this implies, for some constraints are partially isofunctional, leading to relatively arbitrary assignments of the descriptive burden.

50. Is the analysis restrictive?

- Hard to tell.
- At least as a preliminary step, we can compute the **factorial typology** of the constraints in OT, which often behaves like “first choice” maxent.
- To keep things simple, let’s treat $- - v -$ simply as a variant of $v - v -$
- SF = stanza final

	Output #1	Output #2	Output #3	Output #4
Foot 1	v - v -	v - v -	v - v -	v - v -
Foot 2	- - -	- - -	v v - -	v v - -
SF Foot 1	v - v -	v - v -	v - v -	v - v -
SF Foot 2	v - v -	- - -	v - v -	v v - -

	Output #5	Output #6	Output #7	Output #8
Foot 1	v - v -	v - v -	v - v -	v - v -
Foot 2	v v - -	v - v -	v - v -	- v v -
SF Foot 1	v - v -	v - v -	v - v -	v - v -
SF Foot 2	- - -	v - v -	- - -	v - v -
	Output #9	Output #10		
Foot 1	v - v -	v - v -		
Foot 2	- v v -	- v v -		
SF Foot 1	v - v -	v - v -		
SF Foot 2	- v v -	- - -		

51. What is attested in the empirical “highest frequency candidate” typology?

#	Poet/Poem	Factorial typology number
4.	AYG karuwa	1
7.	IYM Rokon Ubangji	1
9.	MHa tutocin shehu	1
11.	TTU Kanari	1
3.	AAA cuta wa mutawa ba	2
6.	IYM Harshen Hausa	5
8.	HGU gidan audu bako zu	5
10.	TTU Harshen Hausa	5
1.	AAA jihar kano	8
2.	AAA kokon mabarata	8
5.	ADS tabarkoko wads	10

52. This could be done better

- We need to do a *Harmonic Grammar* factorial typology
- There is software for this at UMass but we need to climb that learning curve.