Linguistics 219 Spring 2018
Phonological Theory III B. Hayes

Class 9, 4/30/2018: Acquisition III: Learning the parental phonology

1. Assignments

e Hand in Homework #3
e Read: Sharon Goldwater, Thomas L. Griffiths, Mark Johnson (2009) A Bayesian
framework for word segmentation: Exploring the effects of context. Cognition 112:21—
54.
» This is the last technical paper we will cover; no homework yet so you can spend
a little more time with it.
» Feel free to skip appendices.
e Come talk with me about your term paper.

2. Where are we?

e Bifurcated system of acquisition, grammars for production, perception
e Turning now to the task of learning the parental system.

3. The plausible course of learning the parental pattern

¢ Segmentation, done distributionally at first, later with world-knowledge and grammar-
knowledge.
e Treatment of the discovered words and allomorphs:
» phonotactic analysis (which might in turn help segmentation, in virtuous circle)
» discovery of alternations and underlying forms

4. Learning alternations

¢ Bifurcate:
» productive phonology needs to be treated with some kind of GEN + EVAL
architecture, which would permit generalization of alternations to novel

morphemes (blitting ['blici], reluctantly done by Albright/Hayes 2003 subjects).
» Else learn to deploy the listed allomorphs properly.

5. Learning good old fashioned phonology

e We have a theory to derive outputs and algorithms to rank/weight the constraints.
» Though we sometimes wish we could discover the constrints themselves.
e [t probably would help to use alignment to find the particular segmental alternations:

> Example: Polish [vutg] ‘lead-imp.sg.” ~ [vodz-e] ‘lead-1 sg.’
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a. v u tg not: b. vute @
1 10
v o dz @ vo dz

Therefore:

[u] ~[o] is an attested alternation.

[te] ~ [dz] is an attested alternation.

[u] ~[v] is not an attested alternation.

e Some research in this area:

>
>

>

Gaja Jarosz (2006 dissertation, later work)

Ryan Cotterell, Jason Eisner et al. (big ACL bake-off with computer scientists
and large data sets. Connectionism wins!)

Tesar (2014 book with Cambridge)

6. Learning distribution of listed allomorphs

e [ don’t know of any work in this area.

7. Allomorphs in contemporary linguistics

e Recent WCCFL presentations of McPherson and Zhang for phrasal phonology-as-
allomorphy.

e When we do bases later, we will study lexical conservatism, a theory that presupposes a
lot of allomorph-memorization.

8. Learning to take the wug test

¢ C(lassical phonological analysis does not equip you for this!

>

>

It only rationalizes the data pattern, showing how the data could be derived from
a set of underlying forms.
To wug test, you must go from surface data to surface data.

e How to fix this?

>

Albrightianism: there are privileged forms in the paradigm that always permit the
UR to be inferred (e.g. by grabbing the relevant allomorph and undoing the
allophonic rules). E.g. Adam Albright (2010) Base-driven leveling in Yiddish
verb paradigms. NLLT 28:475-537.

Perception grammars, part of a large bidirectional program by Boersma.
Bayesianism: evaluate UR’s on the basis of the probability with which they
would yield observed SR’s in general, then predict the SR’s you want by applying
the grammar in the forward direction from the distribution of UR’s you deduced.
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10.

BASICS OF DISTRIBUTIONAL SEGMENTATION
A key empirical paper

e Saffran, J., Aslin, R., & Newport, E. (1996). Statistical learning in 8-month-old infants.
Science, 274, 1926—-1928.

¢ This showed that 8-month-old babies can extract and later recognize “words” in the form
of horrible-sounding synthesized CVCVCV sequences from monotone, unmodulated
“speech”.

e It’s widely cited (4400 citations), often for ideological reasons (i.e. that purely-statistical
learning is possible, Chomsky is wrong wrong wrong, etc.)

e More evidence bearing on ideology:

» Elissa L. Newport and Richard N. Aslin (2000) Innately constrained learning: blending old and
new approaches to language acquisition. In S. C. Howell, S. A. Fish, and T. Keith-Lucas (eds.),
Proceedings of the 24th Annual Boston University Conference on Language Development. (pp. 1-
21).

» Somerville, MA: Cascadilla Press, 2000.

» It doesn’t have to be sounds; it can be tones, lights, colors ...

> It doesn’t have to be humans, it can be tamarin monkeys,]

e They say “infants have access to a powerful mechanism for the computation of statistical
properties of the language input”

» But what is this mechanism?

» Goldwater and her colleagues on this line of work: “This research, however, is
agnostic as to the mechanisms by which infants use statistical patterns to perform
word segmentation.”

Acquired knowledge about the domain quickly facilitates further segmentation
(virtuous circle)

e Lots of results from Anne Cutler and other psycholinguists show word segmentation is
aided by phonotactics.
» E.g. English iambic words (balloon, believe) are rare.
> Children tend to split them up in segmenting: the gui | tar is.”
» Not so for other languages.
¢ Finnish kids can use “vowel harmony breaks”; Suomi, McQueen, & Cutler, 1997°
e For a big literature review, see Kim diss., cited below.

! Caution: this work done with the now-defrocked academic fraudster Marc Hauser, so you can’t
trust at least the original citations.

2 Jusczyk, P. W., Houston, D. W., & Newsome, M. (1999). The beginnings of

word segmentation in english-learning infants. Cognitive Psychology, 39(3-

4), 159-207.

3 Suomi, K., McQueen, J. M., & Cutler, A. (1997). Vowel harmony and speech segmentation in
Finnish. Journal of Memory and Language, 36, 422-444.
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11.

12.

13.

Real life feats of segmentation: more

e Getting common morphemes, like -s, very early
» Kim, Yun Jung (2015) 6-month-olds’ segmentation and representation of
morphologically complex words, UCLA dissertation.
e Segmenting even when the result is obscured by alternations
» last readings, with paradigm uniformity effect

AN EXAMPLE OF DISTRIBUTIONAL LEARNING: GOLDWATER ET AL. (2009;
READINGS)

Our goal in studying it

e This sort of model — learning something useful from sheer distributions — may become
increasingly common in formal linguistics; as with Wilson and Obdeyn, let us wrap our
heads around it as much as we can.

Concrete goal of the work

e Develop a system that can distributionally segment phonetic corpora into their words,
without understanding them in the slightest.
» Mounting evidence suggests that this is more or less what is happening in the
mind of the 8-month-old.*
e Of course, the parsed corpus itself is of no importance; surely it will be forgotten.
e The real payoff will be in:
» the candidate lexicon
» word frequencies
» (later on:) preliminary statistical information about what word precedes what

* Presumably the easy words like Mommy are learned with meaning pretty early.
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14. A chunk of the corpus used (30K words, child-directed speech)

(a) yuwanttusiD6bUk

(b) you want to see the book

look there’s a boy with his hat

yvou want to look at this

look can you take it out

1UkD*z6b7wIThIzh&t

&nd6d0gi and a doggie
yuwanttulUk&tDIs

1Uk&tDIs look at this
h&vedrINk have a drink
okenQ okay now
WAtsDIs what’s this
WAtsD&t what’s that
WAtIzIt what is it
1Ukk&nyutekItQt

tekItQt take it out
yuwantItIn you want it in
pUtD&tan put that on
D&t that

15. Some lessons that will be promulgated on the way

e An example of work that uses Bayes’s Theorem as a starting point.
e Even the crudest conception of a higher-order grammar helps a lot (“What words like to

come after this word?”

» “There will ... be word boundaries with relatively high transitional probabilities
(where two words are highly associated, as in rubber ducky or that’s a).”

» Goldwater has gone on to write further papers saying: learning two things at once
can be easier than learning one at a time, if the tasks inform each other.

e The algorithmic level vs. the computational level (cf. GLA vs. maxent).

» Algorithmic level: find a way to move forward such that you think it will move
you toward the best answer.

» Computational level: define an objective function that when optimized would
characterize the best answer. Use whatever method words best to optimize.

» They demonstrate that earlier work on the algorithmic level succeeds better only

due to defects in the searching.
16. Conception of probabilistic learning

e There is a large hypothesis space.

e Each hypothesis has a probability, at every stage of learning.
o The probabilities existing after learning are the posterior distribution, which you can

use in various ways.

» Sometimes they use the MAP, “maximum a posteriori” hypothesis; i.e. the best

one.

» Sometimes they sample from the distribution of hypotheses.
e Updating is done with Bayes’ Rule (often called Bayes’ Theorem).
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e Often, as the learned output we pick the hypothesis with the highest posterior
distribution.

17. Bayes’ Theorem

*
e P(BJA)= P AI]?EA)P B
e Scenario: “If you currently think the probability of B is P(B), and know evidence A, then
you may update your belief to P(B|A) in the manner shown.”
» Hence the terms prior distribution and posterior distribution, often used.
e Usefulness: updating the value of a hypothesis if you know how to compute the
likelihood of the observed data A (both under the hypothesis, and in general).
» le. use your ability to compute the forward direction to get the backward
direction.

18. Let’s take a minute to prove Bayes’ Theorem

e Probability theory has two axioms (like Euclid’s for geometry)
e Sum Rule
> P(A or B)=P(A) + P(B) — P(A and B)
e Product Rule
» P(A and B) =P(A) * P(B|A)
» where | means “given”
» “The probability of both A and B occurring is the probability of A occurring,
multiplied by the probability of B occurring given that A occurs.”

19. Graphic demonstration of the Product Rule

P(4) 1-
P4

P(B|4)

[ — P(B|4)
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20.

21.

22.

23.

24.

The proof
1. P(A and B) =P(A) * P(B|A) Product Rule
2. P(B and A) = P(B) * P(AB) Product Rule (applied to A and B in the other way)
3. P(A and B) = P(B) * P(A|B) Commutative property of and
4. P(A) * P(BJA) =P(B) * P(AB) Equality is transitive
P(A|B)*P(B)
5. P(BJA) = P(A) Dividing both sides by P(A)
Restating with data and hypothesis

dh)*P(h
P(h[d)z%—l

e This is used as an update rule.
e P(d) is often computed by producing a weighted sum of the probability of the data under
all hypotheses.

Goldwater et al’s set of hypotheses

e Just take the whole corpus and put in word boundaries where you please.’
e Socrates: n phonetic segments in the corpus; how many hypotheses exist?

¢ Adjustments are made for utterance boundaries, which must be word boundaries; ignored
here.

Degenerate Bayes’s Theorem

e When we do the above, P(d|h) is always one! Every segmentation of the data, when
concatenated, yields the data.

e P(d), the weighted sum of the probability of the data under all hypotheses, is also one.

¢ So really, we just seek the most probable prior hypothesis — P(h).

e That will depend on making sensible prior assumptions about what word sequences are
like.

What would be a sensible prior hypothesis? Several ingredients:

e We expect that the same words will appear over and over.

e The more data we look at, the fewer words new to us there will be.

e Word frequency in corpora follows a characteristic pattern statistically explored long ago
by Zipf.

e About new words: if we encounter a new word, it likely obeys the phonotactics of the
language.

e New words cannot be unreasonably long.°

> Extra stuff goes on because the corpus is divided into small utterances.
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25. These ideas rendered with mathematical formulae

e Opverall scheme: to evaluate a particular assignment of #’s, pretend you are generating
the corpus left to right, one word at a time; and keep multiplying until you get the prior
probability of this word-parse.

e Let’s do this one aspect at a time.

o The same words appear over and over.
o The longer we look at data, the fewer the new words will be.
o Word frequency follows a characteristic statistically explored long ago by Zipf.

%o
n-—+0o

P(w; is novel) =

This makes the first word (» = 0) novel with certainty.

Keeps on sinking; after an infinite corpus we expect no new words.

Otherwise, we use simple counting to estimate the probability of hearing a known
word.

» Socrates: what is the effect of increasing the model parameter a? Turn the page
to verify.

YV V

%I think this can actually be phonology: English has zero monomorphemic words of more than three
metrical feet, despite abundant sources in Native American language borrowings: Okaloacoochee,
but ?Okaloamoacoochee.
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26. Probability of new word as you proceed, for various values of alpha

\ —+— Alpha=1
—=— Alpha=5
—— Alpha=10
) ]ﬂ\ \,\‘ \ —s— Alpha=20
04 —— Alpha=50

1\ NN~ —— T

0

117 33 49 65 81 97 113129 145161 177 193 209 225 241 257 273 289 305 321 337 353 369 385 401 417 433 449 465 481 497
27. Existing words

P(w; = ¢ | w; is not novel) ==
e Just use the known counts to estimate probability.

28. Continuing with the model: phonotactics

o [fwe encounter a new word, it likely has a reasonable length and obeys the phonotactics
of the language.

P(w; = X1 ...Xy | w; is novel) =
p(1 —p#)M_]H?LP(Xj)

where

M is the length of the word you are considering.

p« is the probability of the choice, “hey, you’re done, end the word here”.
Socrates: what distribution of word lengths is defined? Is this realistic?
P(x;) is the fraction of total phonemes taken up by phoneme x;

Socrates: what kind of phonotactics is this? Is this realistic?

VVVVY
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29.

30.

31.

32.

33.

Being clear on this point: there are two divinely-set parameters.

As you did in the generality bias homework, Prometheus tries out various versions of the
language faculty to give to humanity, and picks the one with good parameters for
learning words from continuous speech.

Word-novelty parameter

Word-length parameter

An unacknowledged debt

The authors only fit their parameters to English.
Socrates: what properties of other languages might be more comfortable with different
parameters?

More Socrates: sanity check on rejecting “obviously stupid” parses

One bad segmentation is to split the corpus into its phonemes. How will this rack up a
low probability score?

Another is to take the whole corpus as one gigantic word. How will this rack up a low
probability score?

Another is to carefully go through your parse and make sure it never employs the same
word twice. How will this rack up a low probability score?

Finding the most probable segmentation(s)

This is done with the technique known as Gibbs sampling.

It generates an infinite journey that after an initial settling-in period visits each
hypothesis in proportion to its probability.

From this the best hypothesis (MAP) may (in principle) be selected.

OR you can sample from the distribution, trying each hypothesis according to their
probability.

The authors do both.

Local maxima

There is no guarantee that the method will find the best answer, and the authors tried to
increase their chances by using different starting points:

» Every phoneme a word

» Corpus is a word

» Random
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34.

35.

Evaluation of model performance

e These terms appear frequently in such work.

Computer scientists Cognitive scientists formula

precision accuracy number of correct items/total
items found

recall completeness number of correct items/total
of correct items

2 * precision * recall

e Composite measure: Fy or F-score =

precision + recall

¢ This can be computed on the set of words, the lexicon, and the set of boundaries.
¢ They can use this for diagnosis in various ways.

Their first-pass model was not great

e [t learned tons of two-word sequences as words, no matter how they set the new-word

and word-length parameters.

youwant to see thebook
look there’s aboy with his hat
and adoggie

you wantto lookatthis
lookatthis

havea drink

okay now

what’sthis

what'’sthat

whatisit

look canyou take itout
take itout

youwant it in

put that on

that

yes

okay

open itup

take thedoggie out
ithink it will comeout

let’'ssee

yeah

pull itout

what’s it

loock

look

what’sthat

get it

getit

getit

isthat for thedoggie
canyou feed it to thedoggie
feed it

putit in okay

okay

whatareyou gonna do

I’11 let her playwith this fora while

what
what
what’sthis
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36.

37.

38.

39.

40.

Initially, their rivals’ earlier models looked better

e ... until they tried checking their own best solutions as candidates within the rival
models, and they won.

e [t turned out that the putative good performance of the rival models was due to inferior,
1970’s searching — the true predictions of the earlier models were just as crummy.

¢ So the old models were a clear, if inadvertent, case of the computational vs. the
algorithmic levels (see above): algorithmic success, computational failure.

GOLDWATER ET AL. SCALE UP: THE BIGRAM MODEL
Words are not emitted at random

e ... but are generated by a grammar!
e ... plus also, probably, some lexical listing of phrases ...

A barbaric CS kind of grammar

e Bigram model: each word is emitted with a probability dependent solely on the
preceding word.

Scaling up the Goldwater et al. model to take the preceding word into account

e This discussion paraphrases the article.
e w; is the last word you’ve gotten to, ready to move on.

Decide, by flipping a special coin, whether the pair < w;_;, w;> will be a novel bigram type.

if novel bigram type (probability parameter associated with this)
1. Decide whether w; will be a novel unigram type.
if w; is novel unigram type (probability parameter associated with this)
pick its phonemic form as before (probability parameter associated with this)
if w; is not novel unigram type
pick w; following the probabilities of words that you have seen
if not novel bigram type
pick w; following the probabilities of bigrams that you have seen

e So there are three parameters in the model now, which they set against data.

Are things better?

e Definitely, and their model is now beating the competition.

e Things are not perfect:
» Still some word sequences learned as words. look.at, can.you, is.it, etc.
» Trickily, affixes are now getting segmented: -s, -z, -d, -t, -11).
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» Even worse, they evidently are segmented in weird places: Have a d rink.
Morphology needed, I suspect.

41. The “linguistics” in these models is simply appalling

e Phonotactics = product of probabilities of the segments

e Syntax and diction: a Markov chain, known since the 50’s to be a flop for syntax.

e The authors aren’t dumb; they know this, and presumably are trying to walk before they
run — the conceptual apparatus for distributional learning needs to be put in place.

42. The concept of ideal learning analysis and the competence of human children

e Scheme:

» Set up a formal system with strong foundations and high performance level.

» This is in principle informative about people because people are close to
optimized, or so it is thought.

e Assessment:

» Certainly in linguistics, there is some belief that language learners are, to the
contrary, not especially competent.

-- Obsession by many with on-line rather than batch processing, assuming
poor memory.

-- Proposing totally blind hill-climbing as an acquisition model. (“Hey,
I couldn’t parse this sentence, better pick a parameter at random to
switch!”)

» Goldwater et al. are more optimistic about humanity; p. 22: “To date, there is
little direct evidence that very young language learners approximate ideal
learners. Nevertheless, this suggestion is not completely unfounded, given the
accumulating evidence in favor of humans as ideal learners in other domains or at
other ages [citations]”

A LITTLE BIT ON HIDDEN STRUCTURE
43. What is hidden structure?

e = aspects of representations not inferable from surface form

e Examples:
» underlying representation (German [rat] = /rad/, /rat/)
» metrical feet (two ways to bracket a trisyllables with penultimate stress)
» syllabification ([ab.ra] vs. [a.bra], with consequences for stress, metrics

44. Why is hidden structure hard to learn?

¢ If you make an assumption about feet, then all the rest of the grammar must be tailored to
that assumption.

¢ But most ranking/weight algorithms blindly try to optimize all the constraints at once.
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45.

46.

47.

A toy example: mini-German

e Example drawn from:
» Pater, Joe, Robert Staubs, Karen Jesney and Brian Smith (2012) Learning probabilities over
underlying representations. In the Proceedings of the Twelfth Meeting of the ACL-
SIGMORPHON: Computational Research in Phonetics, Phonology, and Morphology. 62-71.

e There only four data:

» advice-plain /rat/ - [rat]
» advice-suffixed /rat-a/ - [rata]
» wheel-plain /rad/ - [rat]
» wheel-suffixed /rad-a/ - [rada]

» N.B. -a is not a suffix in German but it is easy to type.

e For learning, let’s explore the larger set of candidates that arises if we are trying to learn
UR’s.
> No particular reason to think ‘advice’ is anything other than /rat/.’
» But ‘wheel’ has two candidates, /rat/, /rad/.

advice-plain /rat/ — & [rat]
advice-suffixed /rat-a/ — & [rata]
wheel-plain /rad/ — & [rat]
/rad/ — [rad]
/rat/ — & [rat]
/rat/ — [rad]
wheel-suffixed /rad-a/ — & [rada]
/rad-a/ — [rata]
/rat-a/ — & [rada]
/rat-a/ — [rata]

What defines success?

e We must derive at least one of the observed & candidates for each input.
¢ We must impose consistency on the UR’s, since we need a good UR to pass a wug test
on future forms.
» It will not do, as Pater et al. suggest, to let the UR vary freely in its paradigm.

Constraints

e Let’s not bother with constraints that would derive Intervocalic Voicing, since /rat-a/ —
[rata] will straightforwardly remove this possibility.

7 Actually, people occasionally override the “what you see is what you get” principle for non-
alternating morphemes when they do “set up as”: set up all [h] as /x/, so it can trigger velar place
assimilation (Toba Batak); then revert all /x/ to [h] on the surface. This is not so commonly done as
it used to be ...
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e We do need the standard constraints for Final Devoicing:

» *[—sonorant, +voice] Jword

» IDENT(voice)
e We need, following Boersma, Appousidou, Pater et al., constraints that force a particular
allomorph as the UR.

> WHEEL IS /rad/ — correct!

» WHEEL IS /rat/ — wrong!
» Apoussidou, D. (2007). The learnability of metrical phonology Utrecht: LOT

48. A fancier kind of tableau: collating over hidden structures

e Observed candidates sum over all their sources.
¢ You win if the frequency of the correct observed candidate is 1.
e The weights were established by me, using thought.

» Socrates: justify them, remembering that this is maxent.

Hidden Overt | wheel | wheel | *Coda | Ident
freq | /rad/ | /rat/ | Voiced | (voice
Obs )
50.0 0.0 50.0 250 |H p p(overt
)
advice rat --> rat 1 0 1.000 | 1.000
advice-a | rat-a -->rat-a 1 0 1.000 | 1.000
wheel rad --> rat 1 1 1 25 1.000 | 1.000
rat --> rat 1 50 0.000
rad -->rad 0 1 1 50 0.000 | 0.000
rat --> rad 1 1 1 125 | 0.000
wheel-a | rad-a -->rad-a 1 1 0 1.000 | 1.000
rat-a --> rad-a 1 75 0.000
rad-a --> rat-a 0 1 25 0.000 | 0.000
rat-a --> rat-a 1 50 0.000

49. The fiasco:

hand-ranking is easy, but algorithmic-search ranking crashes and burns!

Hidden Overt | wheel | wheel | *Coda | Ident
freq | /rad/ | /rat/ | Voiced | (voice
Obs )
0 0 20 0 H p p(overt
)
advice rat --> rat 1 0 1.000 | 1
advice-a | rat-a -->rat-a 1 0 1.000 | 1
wheel rad --> rat 1 1 1 0 0.5 1
rat --> rat 1 0 0.5
rad -->rad 0 1 1 20 0
rat --> rad 1 1 1 20 0




Linguistics 219 Class 9, 4/30/18; Acquisition 111 p. 16

wheel-a | rad-a -->rad-a 1 1 0 0.25 | 0.5
rat-a --> rad-a 1 1 0 0.25
rad-a --> rat-a 0 1 1 0 0.25 | 0.5
rat-a --> rat-a 1 0 0.25

e Wrong UR, wrong outputs.
e This is if you take 0 as starting point weights for the Solver.
e [fyou take a very big starting weight for WHEEL = /rad/, then everything works.
» This is making it innate that the word for wheel is /rad/, not a hopeful strategy.

50. Why fiasco?

e The summing over hidden structures evidently removes the beautiful convexity that
makes maxent learning so appealing.
e [fyou are in the region when WHEEL = /RAD/ is high, then the best ranking of Markedness
and Faithfulness is the one that yields final devoicing.
» IDENT(voice) rightly wants to be high, protecting /rad-a/ and /rat-a/ from
undesired random changes.
e Jfyou are in the region when WHEEL = /RAD/ is low, then you are in danger of deriving
(from wrong UR) /rat-a/ — *[rata] ‘wheel’
» Now IDENT(voice) only wants to get out of the way! Being Faithful can only do
harm, as it encourages the bad outcome.
» But if IDENT(voice) is near zero, then promoting WHEEL = /rad/ does no good; the
UR won’t get enforced.
» “Hey, I thought it was your job, so I decided to just nap.”
» They nap on the couch of a wrong local maximum.
e More generally, we are letting the violations of IDENT(voice) be dependent on the values
of the UR constraints, a context-dependency that seem responsible for defeating
convexity.

51. Efforts to learn hidden structure

e Tesar and Smolensky (2001) Learnability in Optimality Theory. An approach called
Robust iterative parsing; non-stochastic OT.

e Tesar book (2014) Output-Driven Phonology, Cambridge University Press.

e Appousidou, cited above

e (Gaja Jarosz paper in progress, with a whole new version of OT, evidently best of the lot
but not perfect. I would love to try out her system.

» Jarosz, Gaja. 2015 / in revision. Expectation driven learning of phonology. University of
Massachusetts manuscript.

52. The exterminationist approach to hidden structure

e Pending further progress in learning theory, perhaps hidden structure is more trouble than
it’s worth?
e It’s been tried for metrical stress theory a number of times (no feet):
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» Alan Prince (1983 LI, “Relating to the grid”)
» Gordon, Matthew (2002) A factorial typology of quantity insensitive stress,
Natural Language and Linguistic Theory 20, 491-552.

e Donca Steriade is an exterminationist w.r.t. syllables, a strikingly non-traditionalist point

of view, but she has replacement theories in hand for both
» phonotactics (phonetic cue-based theory)
» metrical structure (interval theory)

¢ For underlying representations, there is a modest contingent who want to do phonology
just with allomorphs, no UR’s inferred from allomorphs. Harry Bochner, Luigi Burzio
are examples.

e Exterminationists are thinner on the ground in syntax (e.g., trees with fewer nodes) but
perhaps categorial grammar is an example. Here is an automated-learning-of-syntax
paper:

» Omri Abend, Tom Kwiatkowski, Nathaniel J. Smith, Sharon Goldwater and Mark
Steedman (2017) Bootstrapping language acquisition. Cognition 164, pp. 116—
143.

e Remember always that complete extermination of hidden structure is certainly not

feasible; there’s various stuff I can’t imagine we could do without.
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