

Class 6, 3/18/2018: Knobs II

1. Assignments

- Read for next time:
 - Lise Menn (1983) Development of articulatory, phonetic, and phonological capabilities. In Brian Butterworth, *Language Production* vol. 2. Academic Press.
 - I will mail it out; web site still down.
- Homework on bias due in class Monday April 23.

COMMENTS ON MEDIAL CLUSTER HOMEWORK

2. Looks good

- Everyone is with the program, and various imaginative things popped up.

3. Integrating more traditional phonology

- The traditional story is define onsets, define codas, concatenate, add a few trans-syllabic constraints.
- This would imply including the initial and final clusters in the spreadsheet, trying general constraints that penalize e.g. both CC and C#.
- Then, we have the problem of syllabification; is [b] in [abra] an onset or coda?
 - The problem of **hidden structure**, to be covered later.

4. Repaired violations

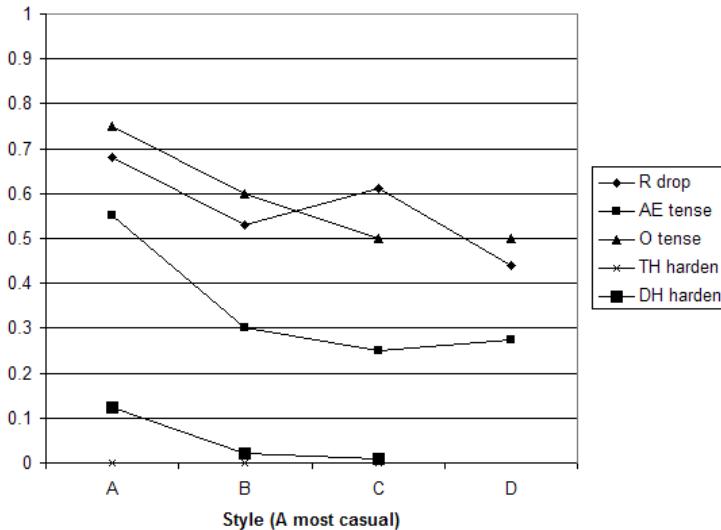
- Sometimes a trans-syllabic constraint is actively repaired, so the constraint you posit interact with Faithfulness.

5. The Syllable Contact Law

- Useless. Every single language.

6. A reference source on modeling I couldn't find earlier

- Burnham, Kenneth P., Anderson, David R. (2002) *Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach*. Springer. Pricey.
 - Fisheries bit was: Colorado Cooperative Fish and Wildlife Research Unit.
- Coetzee and Pater cite an article by this helpful pair of statisticians.

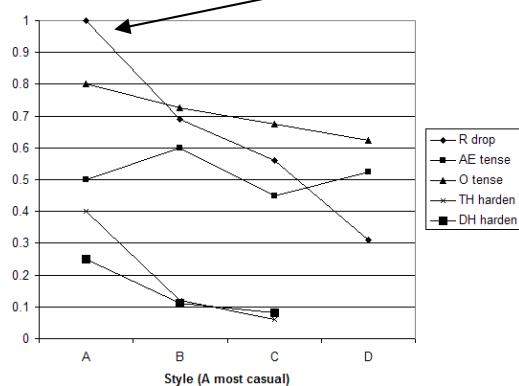

MORE ON KNOBS

7. What have we got so far?

- Four conjectured “knobs”:
 - style
 - emphasis
 - rate
 - lexical frequency
- A fifth knob made dubious by acquisition issues:
 - identity, depending on exposure to enough learning data in childhood¹
- Classical methods of measuring the effect of style: Labov’s interviews and observations
- Lockstep: New Yorkers lockstep their application of:
 - /i/ → Ø in codas
 - /æ/ → [iə] before certain consonants
 - /ɔ/ → [ʊə]
 - /θ,ð/ → [t̪, d̪] or [t̪̪, d̪̪]
- We were about to examine some lockstepped Lower East Siders

8. Phonological free variation in the speech of Miriam

- Miriam is 35 years old, graduated Hunter College and St. John’s law school, works as lawyer.


- The phenomenon that an upstate-raised General American speaker (BH) finds eeriest is theta-hardening, where Miriam is at zero in all styles.

¹ I may have paid this short shrift: while I cannot *talk like* a New Yorker or British person, their accents are easily intelligible to me, unlike (say) obscure rural Irish dialects. I clearly have learned something for purposes of perception, perhaps even post-critical period. See later on breaking competence into production vs. perception components.

- *thin* [tɪn] who ever says this?
- *this* [dɪs], *sad* [sɪəd], *law* [luə], *car* [ka:] how charming, how quaint

9. Variation in the speech of Doris

- Doris is 39, homemaker, African-American.
- She doesn't have perfect lockstep
- Labov thinks that for Doris, and others, r-dropping is more sensitive to style than other processes.

10. Why is Doris not lockstepped? A conjecture

- Perhaps she is bidialectal in African-American Vernacular English?
- Conceivably she is switching dialects as well as styles?

11. Is there more available somewhere?

- Sociolinguistics seems to be shifting its emphasis away from phonology ...
- But the older sort of data — careful tracking of application rates of multiple processes across style-controlled elicitation — seems our best hope for studying the style knob.

12. Another way to check lockstep: two processes in the same word

- *Tantalus* /tæntələs/. Rare, (see below), which encourages non-Tapping.
- Eligible processes:
 - NT Tapping: {nt} → ɾ / V [V
-stress]
 - /æ/ Tensing: æ → ɪə / {m,n}
- Candidate pronunciations:
 - ['tæntələs]
 - ['t̪æntələs]
 - ?['tæɾələs]

- ['tīərələs]
- Socrates: what is going on here?

13. Here is another example

- *mountain* /'mauntən/.
- Eligible processes:
 - NT Tapping: {nt} → ū / V $\underline{\quad}$ $\begin{bmatrix} V \\ -\text{stress} \end{bmatrix}$
 - Syllabic Nasal Formation: ən → ū / {t,d} $\underline{\quad}$
- Candidate pronunciations:
 - ['mauntən]
 - *['mauřn̩] impossible, Tapping requires a right-side vowel
 - ?['mauřən̩] I don't like this, but others can say it.²
 - ['mauntn̩]

14. Term paper topic?

- Formalize the Coetzee/Pater knob below and make correct predictions about such cases, sometimes known as “register conflict”.

15. Free variation in society is structured as well

- Fig. 4.2 from William Labov (1972) *Sociolinguistic Patterns*

² My evidence is a recording by the folk singer Pete Seeger, listened to by me on disk in childhood and cassette in parenthesis: “She’ll be comin’ round the ['mauřən̩] when she comes”.

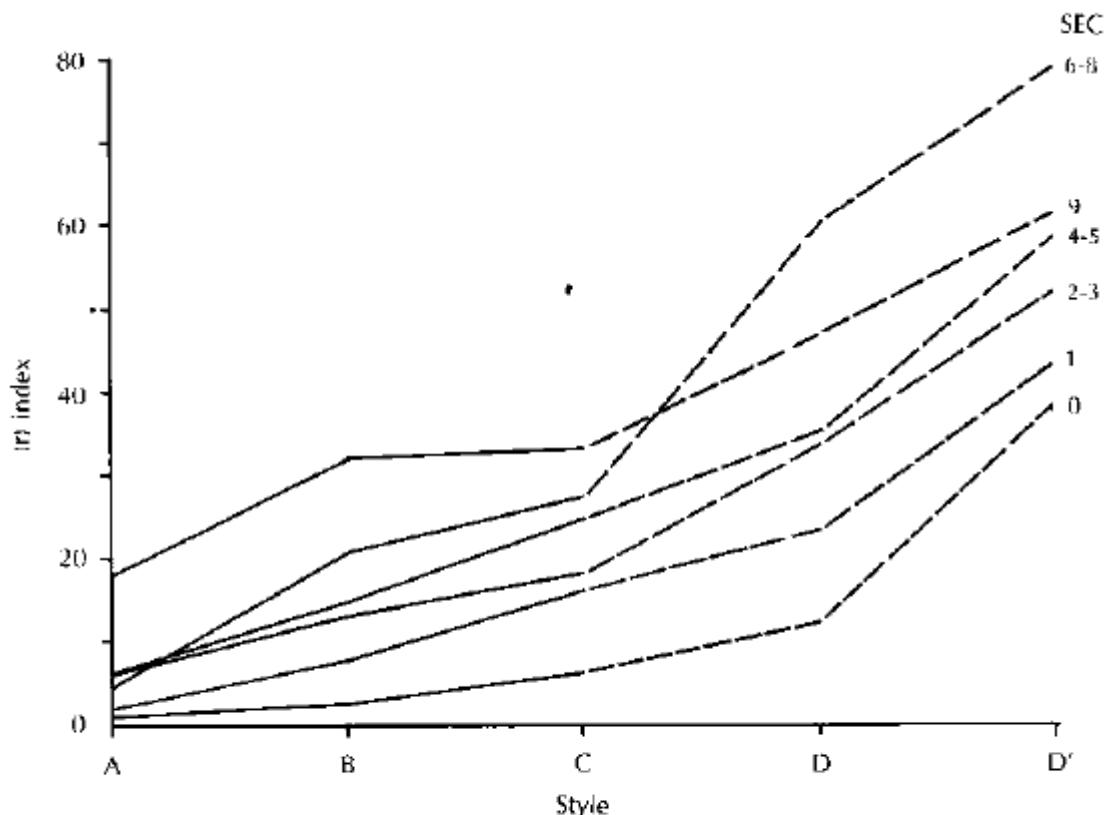


Fig. 4.2. Class stratification of a linguistic variable in process of change: (r) in *guard, car, bear, beard, board*, etc. SEC (Socio-economic class) scale: 0-1, lower class; 2-4, working class; 5-6, 7-8, lower middle class; 9, upper middle class. A, casual speech; B, careful speech; C, reading style; D, word lists; D', minimal pairs.

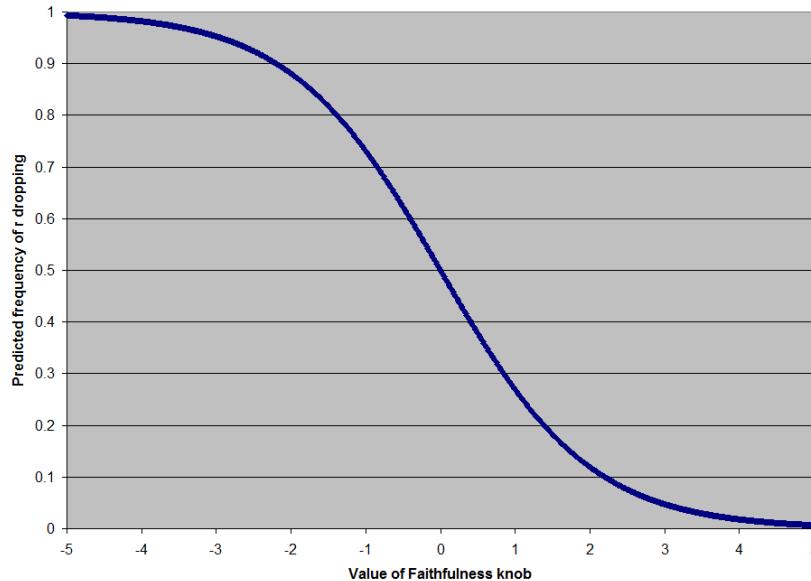
- from 81 native speakers of New York City English
- Vertical axis: what percentage of underlying /r/ are retained in the output?
- An independent investigation sorted the speakers into their social classes.
- The “leaping up” of the lower-middle-class speakers in the formal styles is found in other studies, and is claimed to reflect a social insecurity independently diagnosed by other tests.³
- Perhaps these speakers have similar grammars but habitually set their style knobs differently?
 - Again, the “who listens to whom during acquisition” issue arises; lawyer Miriam may have never met Bennie, Labov’s truck driver.

16. The research challenge

- Do knobs exist as entities, so that multiple processes really do vary in lockstep?
- If so, how can we implement knobs in a formal phonological grammar?

³ For example: series of questions: “how do you say this word? ... how should this word be said?”, total cases of difference.

- Can Harmonic Grammar/maxent help?
- In empirical work, are there rigorous ways for us to track how knobs are set?


A HALLMARK OF KNOBS IN MAXENT: SIGMOID CURVES

17. Goal

- Understand the qualitative predictions a theory makes, so we know what to look for.

18. Scenario

- We set in conflict a Markedness constraint and a Faithfulness constraint, for R Dropping:
 - *CODA r
 - MAX(r)
- We follow Coetzee and Kawahara, below, in assigning our knob to the Faithfulness constraints.
- Under this scheme, MAX(r) gets an augment or decrement, based on setting of some knob.
 - Call it K.
- Harmony of /kar/ → [ka]: weight of MAX(r) + K
- Harmony of /kar/ → [kar]: weight of *CODA(r)
- Let's do a little spreadsheet, checking every value of K from -5 to +5.

- This is the beautiful **logistic curve**, a common output pattern of maxent.
- It is centered at K = 0, with the varying slope that reflects the barriers to certainty near 1 and 0.
- The math is presented in full detail in the Supplementary Materials to:

- Laura McPherson and Bruce Hayes (2016) Relating application frequency to morphological structure: the case of Tommo So vowel harmony. *Phonology* 33: 125–16
- I suspect that Noisy Harmonic Grammar (below) would behave the same but I'm not sure.

19. A consequences of maxent for knob theory

- If the knob is a simple number (harmony adjustment), it should have
 - small consequences for processes that are at extremes: near-impossible, near-obligatory
 - large consequences for processes that apply with close to 50/50 probability.
- We might try to read confirmation/disconfirmation off of Labov's diagrams for Miriam, Doris, etc. [term paper topic?]
- Or compare near-obligatory regular Tapping with the less-likely-to-apply NT Tapping, seen in *center* ['sɛɾə].

EFFECTS OF FREQUENCY IN PHONOLOGY: NOT ALL OF THEM NECESSARILY GRAMMAR

20. Acquisition effects

- The rare is hard to memorize.
- Hence irregular forms tend to get regularized when frequency goes down.
- See readings p. 81: Bybee showed that old irregular pasts, like *chide* ~ *chid*, got regularized in this way.⁴

21. Nativization effects

- A foreign word becomes more common in usage.
- It starts to feel ever more strange to give it its faithful foreign rendition.
- Thus, regularization.
 - Partly removing marked, foreign configurations
 - Partly just making more faithful to the orthography
- In my lifetime, I suspect, these have been accommodated:
 - *croissant* [kʁwasã] → [kʁə'sɑ̃t]
 - *cappuccino* [kapu'tʃinu] → [kæpə'tʃinu]
 - *gazpacho* [gas'patʃou] → [gəs'patʃou]
- I believe that the second example in the readings is of this kind; Japanese speakers getting used to foreign words with [bb], [dd], etc.
- Is there a “perceived foreignness” knob?

⁴ Bybee, Joan (1985) *Morphology: a study of the relation between meaning and form*. Philadelphia: Benjamins.

22. Online production effects of frequency (focus here)

- Psycholinguistics has shown that the listener knows the frequencies of words, and weights their probabilities in perception.
 - This is probably one of the best-established results in the field.
- Greater Faithfulness in speaking gives your hearer a better chance on rarer words — this accords with my commonsense experience.

23. Example: let us experience our Sprachgefühl for Tapping

- This is from my little utility; words from CMU Dictionary; frequencies from CELEX:⁵
- Obviously-affixed words excluded.

<i>little</i>	21886	<i>gratis</i>	5
<i>water</i>	8418	<i>natter</i>	5
<i>matter</i>	6622	<i>bonito</i>	4
<i>society</i>	6066	<i>carotid</i>	4
<i>city</i>	4867	<i>catacomb</i>	4
<i>letter</i>	3706	<i>Catalonia</i>	4
<i>total</i>	2520	<i>catamaran</i>	4
<i>committee</i>	2503	<i>clematis</i>	4
<i>quality</i>	2369	<i>cuticle</i>	4
<i>daughter</i>	2305	<i>betel</i>	3
<i>hospital</i>	2300	<i>philately</i>	2
<i>attitude</i>	2246	<i>poinsettia</i>	2
<i>pattern</i>	2213	<i>vibrato</i>	2
<i>bottle</i>	2181	<i>yeti</i>	2
<i>pretty</i>	2125	<i>lotto</i>	1

COETZEE AND KAWAHARA

24. Coetzee and Kawahara's hypothesis: the Frequency knob is implemented by Faithfulness variability

$$H(cand) = \sum_{i=1}^n (w_i + nz_i) M_i(cand) + \sum_{j=1}^m (w_j + nz_j + sf) F_j(cand)$$

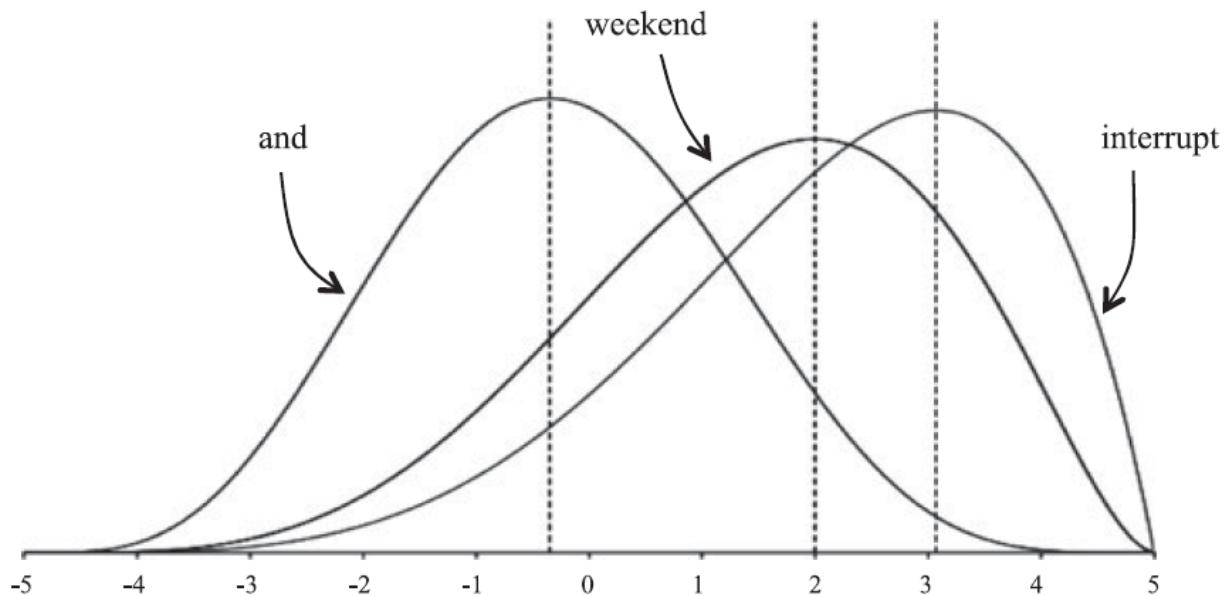
- This is the Harmony formula, which they then plug into the Noisy Harmonic Grammar framework, similar in results to maxent.
- The formula sums up Markedness and Faithfulness.
- Since it's NHG, we have noise (nz_i), added into every constraint weight.
- The scaling factor sf (my K) is the same for all Faithfulness constraints (lockstep), and its value comes from another equation relating it to frequency.

⁵ Actually, *Britain* and *British* are way up there; I removed them as unlikely to be super-frequent for non-Brits.

25. The first stage of the math: computing the scaling factor from frequency

- Find the value at which this function (called the beta distribution) achieves its maximum:

$$f(x, \alpha, \beta, \rho) = \rho \frac{x^{\alpha-1}(1-x)^{\beta-1}}{\int_0^1 x^{\alpha-1}(1-x)dx}$$


where

- rho = general amount of oomph the factor provides; C+K obtained a value by fitting to their data
- α = log of “reference frequency”; the median frequency of the corpus sorted by tokens
- β = log of frequency of the word you are dealing with

26. Understanding this formula

- I am at a loss for why they chose it.
- The rough qualitative pattern is certainly appropriate:
 - when a word is frequent, the scaling factor is negative (Faithfulness weights goes down)
 - when a word is infrequent, scaling factor is positive (Faithfulness weights go up).

27. Graph showing this

28. Interpreting the scaling factor

- Noisy Harmonic Grammar: Gaussian distribution for the constraint weight moves sideways by whatever the factor is.
- This changes probabilities of output candidates, in a way that could be solved analytically, I guess, but I will not try here.
- *If* we did it in maxent, our earlier theorem applies: log odds of Unfaithful candidate to Faithful candidate shift by the scaling factor.
- But since this is a two-stage process, we do not have some straightforward equation relating lexical frequency to rule application frequency.

29. First empirical study: /t/ deletion

- Buckeye Corpus
- Markedness and Faithfulness constraints are straightforward:
- Constraints used:

*CT]_{Word}

Assign one violation mark for every word that ends in the sequence [-Ct] or [-Cd].

MAX

Assign one violation mark for every input segment lacking an output correspondent.

MAX-PRE-V

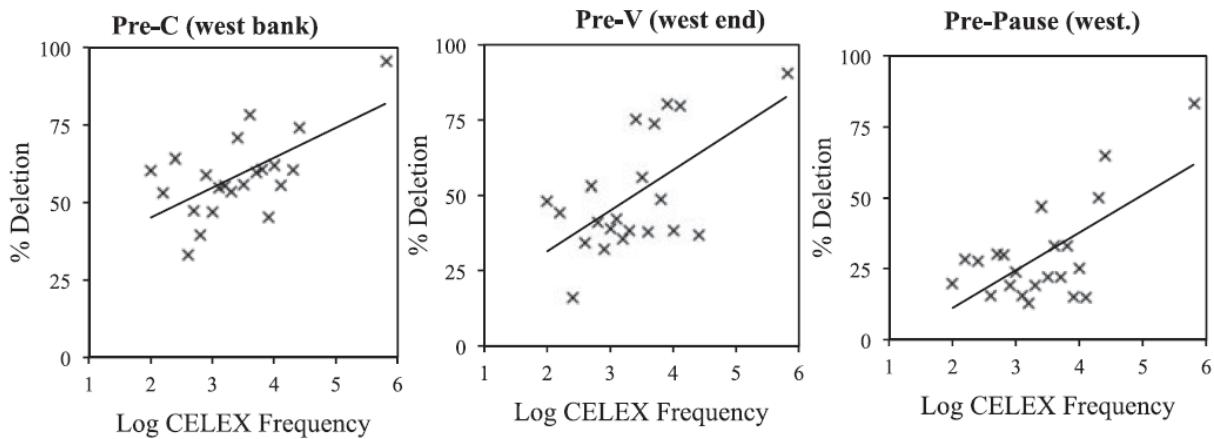
Assign one violation mark for each segment that appears in pre-vocalic context in the input, and that does not have a correspondent in the output.

MAX-PRE-PAUSE

Assign one violation mark for each segment that appears in pre-pausal context in the input, and that does not have a correspondent in the output.

30. Knob

- All three Faithfulness constraints get the same knob-based boost/decrement.
- Note that since there is Faithfulness overlap there will be a *double* boost/decrement.


31. Incorporating frequency improves model performance

- They use the “AIC” (Akaike Information Criterion) and it unambiguously shows an improvement, properly taking into account the increase of 1 in parameter count.

32. Commentary I: choice of data

- The word *and* is extremely frequent and is an outlier in the distribution.

- Indeed, the raw distributions are narwhal-shaped.⁶

- So to what degree is the model performing as well as it is because of *and*?

33. Commentary II: testing the model

- I would see the “acid test” to be taking on some “lockstep” data, as above. Perhaps one phenomenon at a time is too easy?

GENERAL PREDICTIONS OF THE MODEL

34. Prediction (p. 78): no frequency reversals in different Markedness contexts

- If deletion word-finally is more common than deletion pre-consonantly for some lexical frequencies, it must be so for all lexical frequencies.
- Same, I suppose, for other knobs.

35. Prediction (p. 80): Markedness conflicts do not respect word frequency differences

- Stress patterns are often expressed with a set of conflicting Markedness constraints.
- There *is* attested free variation in stress patterns; e.g. penult/preantepenult in LLLL words of Egyptian Radio Arabic.
- So these should not be sensitive to lexical frequency.

36. Restating the prediction

- The standard treatment of allophones in OT is ranking of Markedness constraints only.
- The very fact that they are allophones means that the lexicon has no influence.
- Hence Faithfulness excluded.
- This excludes all instances of allophony from word-frequency effects — a bold move!

⁶ Thanks, Beth and Connor, for this outstandingly useful term! I suggest defining it as “blob, plus outlier creating a good correlation”.

- This ought to be checkable against the research literature in phonetics.

37. Can we hand-check the role of frequency in an allophonic process?

- Let's try my (and perhaps your?) English, with diphthongization of /æ/ to [ɪə] before [m] and [n].
- Frequencies from CELEX:

<i>andiron</i>	1	<i>and</i>	514946
<i>annular</i>	1	<i>can</i>	71194
<i>anode</i>	1	<i>man</i>	29731
<i>banditry</i>	1	<i>hand</i>	14241
<i>pantaloons</i>	1	<i>stand</i>	8954
<i>aggrandize</i>	1	<i>answer</i>	5435
<i>manioc</i>	2	<i>plan</i>	5429
<i>Tantalus</i>	2	<i>land</i>	5152
<i>galvanic</i>	2	<i>animal</i>	4658
<i>polyandrous</i>	2	<i>demand</i>	3584
<i>aniline</i>	2	<i>chance</i>	3221
		<i>plant</i>	2707

- I think I diphthongize the common words more.
 - It sounds pretentious to me to say the common words as [æ], perfectly natural to say the rare words as [ɪə].
- But this actually be the style knob: the rare words are suited to learned and vernacular styles in any event.
- This might at least show that the style knob must manipulate Markedness as well as Faithfulness — allophonic processes are style-markers par excellence.

38. What about fortition?

- Do we not take advantage of “clear speech” allophones when we convey a rare or novel words?
- “Hello, my name is Fred [tʰælfəs]” (*Talfus*) with strong aspiration of /t/, really low [æ]?
- Like Faithfulness, this too helps the listener by providing salient, dispersed allophones.

39. Prediction: cases violating multiple overlapping Faithfulness constraints should be more frequency-sensitive

- Scenario: optional vowel reduction of unstressed [i, e] is less common for non-high vowels, word-final vowels
 - /palipu/ → ['paləpu] 80%
 - /palepu/ → ['paləpu] 60%
 - /papuli/ → ['papulə] 40%
 - /papule/ → ['papulə] 30%

- Faithfulness constraints:
 - IDENT(vowel quality) / in non high vowels
 - IDENT(vowel quality) / ____]
- Prediction:
 - /papule/ → [papulə] should be more sensitive to lexical frequency
 - (or to other knobs should one wish to extend the theory)
 - Why? It gets two copies of the Faithfulness knob value entered into its harmony computation.